Main Article Content
Abstract
Piano sight-reading is a complex cognitive activity that many pupils remain unable to perform despite sustained educational efforts. AI and digital technology have revolutionized numerous educational fields; however, their integration with educational technology for sight-reading piano remains diffuse and concerning to experts due to a lack of coherence across AI-related investigations. This study aims to systematize knowledge on the application of AI and digital technologies in educational technology for sight-reading piano, following the PRISMA-ScR guidelines. A search of four main databases (Web of Science, IEEE Xplore, Scopus, ACM Digital Library) was conducted for papers on AI-related technology for sight-reading piano from 2014 to 2024. This resulted in screening 368 entries to select 33 relevant to the study objective. Five types of technology exist: AI-related intelligent tutoring systems, computer vision and optical music recognition, pattern recognition with deep learning, applications of virtual reality and augmented reality, and mobile and IoT. The study demonstrates a discrepancy between the complexity of AI and accessibility for pupils. AI-powered tutoring systems and deep learning approaches are showing promising results in controlled settings, but evidence on long-term effectiveness remains limited. A fundamental tension exists between analytical sophistication and accessibility: high-performing systems require substantial computational resources, while accessible mobile solutions provide much weaker analytical capabilities. On the other hand, accessibility for pupils remains a top priority, including the use of IoT technology for educational sight-reading piano.
Keywords
Article Details
References
- Arthur, P., McPhee, E., & Blom, D. (2020). Determining what expert piano sight-readers have in common. Music Education Research, 22(4), 447-456. DOI: 10.1080/14613808.2020.1767559
- Mishra, J. (2014). Factors related to sight-reading accuracy: A meta-analysis. Journal of Research in Music Education, 61(4), 452-465. DOI: 10.1177/0022429413508585
- Perisynaki, E. (2023). Developing pedagogical material for piano sight-reading, for the context of Greek Conservatoire music education (Doctoral dissertation, University of York).
- Zhai, X., Chu, X., Chai, C. S., Jong, M. S. Y., Istenic, A., Spector, M., ... & Li, Y. (2021). A Review of Artificial Intelligence (AI) in Education from 2010 to 2020. Complexity, 2021(1), 8812542. DOI: 10.1155/2021/8812542
- Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education–where are the educators?. International journal of educational technology in higher education, 16(1), 1-27. DOI: 10.1186/s41239-019-0171-0
- Wang, S., Wang, F., Zhu, Z., Wang, J., Tran, T., & Du, Z. (2024). Artificial intelligence in education: A systematic literature review. Expert Systems with Applications, 252, 124167. https://doi.org/10.1016/j.eswa.2024.124167
- Amm, V., Chandran, K., Engeln, L., & McGinity, M. (2024). Mixed reality strategies for piano education. Frontiers in Virtual Reality, 5, 1397154. DOI: 10.3389/frvir.2024.1397154
- Chassignol, M., Khoroshavin, A., Klimova, A., & Bilyatdinova, A. (2018). Artificial Intelligence trends in education: a narrative overview. Procedia computer science, 136, 16-24. https://doi.org/10.1016/j.procs.2018.08.233
- Walter, Y. (2024). Embracing the future of Artificial Intelligence in the classroom: the relevance of AI literacy, prompt engineering, and critical thinking in modern education. International Journal of Educational Technology in Higher Education, 21(1), 15. https://doi.org/10.1186/s41239-024-00448-3
- Tricco, A. C., Lillie, E., Zarin, W., O'Brien, K. K., Colquhoun, H., Levac, D., ... & Straus, S. E. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Annals of internal medicine, 169(7), 467-473. DOI: 10.7326/M18-0850
- Arksey, H., & O'malley, L. (2005). Scoping studies: towards a methodological framework. International journal of social research methodology, 8(1), 19-32. DOI: 10.1080/1364557032000119616
- Peters, M. D., Godfrey, C., McInerney, P., Munn, Z., Tricco, A. C., & Khalil, H. (2020). Scoping reviews. JBI manual for evidence synthesis, 10, 10-46658. https://doi.org/10.46658/JBIMES-20-12
- Li, W. (2022). Analysis of piano performance characteristics by deep learning and artificial intelligence and its application in piano teaching. Frontiers in Psychology, 12, 751406. DOI: 10.3389/fpsyg.2021.751406
- Liao, Y. (2022). Educational evaluation of piano performance by the deep learning neural network model. Mobile Information Systems, 2022(1), 6975824. https://doi.org/10.1155/2022/6975824
- Huang, N., & Ding, X. (2022). Piano music teaching under the background of artificial intelligence. Wireless Communications and Mobile Computing, 2022(1), 5816453.
- https://doi.org/10.1155/2022/5816453
- Chen, C. C., Hung, P., Eğrioğlu, E., & Hsiao, K. L. (Eds.). (2022). Deep Learning in Adaptive Learning: Educational Behavior and Strategy. Frontiers Media SA.
- Cui, K. (2023). Artificial intelligence and creativity: piano teaching with augmented reality applications. Interactive Learning Environments, 31(10), 7017-7028. https://doi.org/10.1080/10494820.2022.2059520
- Calvo-Zaragoza, J., Jr, J. H., & Pacha, A. (2020). Understanding optical music recognition. ACM Computing Surveys (CSUR), 53(4), 1-35. DOI: 10.1145/3397499
- Shatri, E., & Fazekas, G. (2020). Optical music recognition: State of the art and major challenges. arXiv preprint arXiv:2006.07885.
- https://doi.org/10.48550/arXiv.2006.07885
- Lee, M., Kim, H., Moon, M., & Park, S. M. (2021). Computer-Vision-Based Advanced Optical Music Recognition System. Journal of Computational and Theoretical Nanoscience, 18(5), 1345-1351. DOI:10.1166/jctn.2021.9626
- Nugroho, D. R., & Zahra, A. (2024). Musical Note Position and Duration Recognition Model in Optical Music Recognition Using Convolutional Neural Network. Journal of Image and Graphics, 12(1). DOI:10.1504/IJART.2021.115764
- Andrea, Paoline, & Zahra, A. (2021). Music note position recognition in optical music recognition using convolutional neural network. International Journal of Arts and Technology, 13(1), 45-60. DOI:10.1504/IJART.2021.10035633
- Ríos-Vila, A., Calvo-Zaragoza, J., & Paquet, T. (2024, August). Sheet music transformer: End-to-end optical music recognition beyond monophonic transcription. In International Conference on Document Analysis and Recognition (pp. 20-37). Cham: Springer Nature Switzerland.
- https://doi.org/10.48550/arXiv.2402.07596
- Ríos-Vila, A., Inesta, J. M., & Calvo-Zaragoza, J. (2022, April). On the use of transformers for end-to-end optical music recognition. In Iberian Conference on Pattern Recognition and Image Analysis (pp. 470-481). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-04881-4_37
- Wang, A., & Mukaidani, H. (2021, June). An efficient piano performance evaluation model using DTW based on deep learning. In 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE) (pp. 1-6). IEEE. DOI:10.1109/ISIE45552.2021.9576338
- Kim, H., Ramoneda, P., Miron, M., & Serra, X. (2022). An overview of automatic piano performance assessment within the music education context. DOI:10.5220/0011137600003182
- Ariza, I., Tardón, L. J., Barbancho, A. M., De-Torres, I., & Barbancho, I. (2022). Bi-LSTM neural network for EEG-based error detection in musicians' performance. Biomedical Signal Processing and Control, 78, 103885. https://doi.org/10.1016/j.bspc.2022.103885
- Zhao, J., & Yu, K. (2024, September). Recognition and Error Correction of Piano Playing Music based on Spatial Attention Mechanism with Convolutional Neural Network. In 2024 International Conference on Distributed Systems, Computer Networks and Cybersecurity (ICDSCNC) (pp. 1-5). IEEE.
- DOI: 10.1109/ICDSCNC62492.2024.10941279
- Hernandez-Olivan, C., & Beltran, J. R. (2022). Music composition with deep learning: A review. Advances in speech and music technology: computational aspects and applications, 25-50.
- https://doi.org/10.48550/arXiv.2108.12290
- Yang, J., Zhou, Y., & Lu, Y. (2023). Multimedia Identification and Analysis Algorithm of Piano Performance Music Based on Deep Learning. Journal of electrical systems, 19(4). https://doi.org/10.52783/jes.632
- Amm, V., Chandran, K., Engeln, L., & McGinity, M. (2024). Mixed reality strategies for piano education. Frontiers in Virtual Reality, 5, 1397154. DOI: 10.3389/frvir.2024.1397154
- Rigby, L., Wünsche, B. C., & Shaw, A. (2020, December). piARno-an augmented reality piano tutor. In Proceedings of the 32nd Australian conference on human-computer interaction (pp. 481-491). https://doi.org/10.1145/3441000.3441039
- Simion, A., Iftene, A., & Gîfu, D. (2021). An Augmented Reality Piano Learning Tool. RoCHI, 2021, 134-141. DOI:10.37789/rochi.2021.1.1.21
- Stanbury, A. J., Said, I., & Kang, H. J. (2021, December). Holokeys: Interactive piano education using augmented reality and iot. In Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology (pp. 1-3). https://doi.org/10.1145/3489849.3489921
- Molero, D., Schez-Sobrino, S., Vallejo, D., Glez-Morcillo, C., & Albusac, J. (2021). A novel approach to learning music and piano based on mixed reality and gamification. Multimedia Tools and Applications, 80(1), 165-186. DOI: 10.1007/s11042-020-09678-9
- Graf, M., & Barthet, M. (2023). Combining vision and emg-based hand tracking for extended reality musical instruments. arXiv preprint arXiv:2307.10203.
- https://doi.org/10.48550/arXiv.2307.10203
- Ng, S. C., Lui, A. K., & Kwok, A. C. (2015, July). Easy-to-learn piano: A mobile application for learning basic music theory and piano skill. In International Conference on Technology in Education (pp. 103-112). Berlin, Heidelberg: Springer Berlin Heidelberg. DOI:10.1007/978-3-662-48978-9_10
- Xia, Y. (2020). Resource scheduling for piano teaching system of internet of things based on mobile edge computing. Computer Communications, 158, 73-84. https://doi.org/10.1016/j.comcom.2020.04.056
- Yan, L. (2019). Design of piano teaching system based on internet of things technology. Journal of Intelligent & Fuzzy Systems, 37(5), 5905-5913. DOI:10.3233/JIFS-179172
- Fang, B., & Liang, X. (2023). Design and application of cloud computing recommendation based on genetic algorithm in piano online course video system. DOI:10.21203/rs.3.rs-2709888/v1
- Ruan, W. (2024). Increasing student motivation to learn the piano using modern digital technologies: independent piano learning with the soft Mozart app. Current Psychology, 43(44), 33998-34008. DOI: 10.1007/s12144-024-06924-3
- Yao, Y. (2023). Online and offline hybrid teaching mode of piano education under the background of big data and Internet of Things. Journal of Computational Methods in Science and Engineering, 23(2), 715-724. https://doi.org/10.3233/JCM-226640
- Xue, X., & Jia, Z. (2022). The Piano‐Assisted Teaching System Based on an Artificial Intelligent Wireless Network. Wireless Communications and Mobile Computing, 2022(1), 5287172.
- https://doi.org/10.1155/2022/5287172
- Li, J. (2022). Study on integration and application of artificial intelligence and wireless network in piano music teaching. Computational Intelligence and Neuroscience, 2022(1), 8745833.
- https://doi.org/10.1155/2022/8745833
- Li, M. (2016). Smart home education and teaching effect of multimedia network teaching platform in piano music education. International Journal of Smart Home, 10(11), 119-132. DOI:10.14257/ijsh.2016.10.11.11
References
Arthur, P., McPhee, E., & Blom, D. (2020). Determining what expert piano sight-readers have in common. Music Education Research, 22(4), 447-456. DOI: 10.1080/14613808.2020.1767559
Mishra, J. (2014). Factors related to sight-reading accuracy: A meta-analysis. Journal of Research in Music Education, 61(4), 452-465. DOI: 10.1177/0022429413508585
Perisynaki, E. (2023). Developing pedagogical material for piano sight-reading, for the context of Greek Conservatoire music education (Doctoral dissertation, University of York).
Zhai, X., Chu, X., Chai, C. S., Jong, M. S. Y., Istenic, A., Spector, M., ... & Li, Y. (2021). A Review of Artificial Intelligence (AI) in Education from 2010 to 2020. Complexity, 2021(1), 8812542. DOI: 10.1155/2021/8812542
Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education–where are the educators?. International journal of educational technology in higher education, 16(1), 1-27. DOI: 10.1186/s41239-019-0171-0
Wang, S., Wang, F., Zhu, Z., Wang, J., Tran, T., & Du, Z. (2024). Artificial intelligence in education: A systematic literature review. Expert Systems with Applications, 252, 124167. https://doi.org/10.1016/j.eswa.2024.124167
Amm, V., Chandran, K., Engeln, L., & McGinity, M. (2024). Mixed reality strategies for piano education. Frontiers in Virtual Reality, 5, 1397154. DOI: 10.3389/frvir.2024.1397154
Chassignol, M., Khoroshavin, A., Klimova, A., & Bilyatdinova, A. (2018). Artificial Intelligence trends in education: a narrative overview. Procedia computer science, 136, 16-24. https://doi.org/10.1016/j.procs.2018.08.233
Walter, Y. (2024). Embracing the future of Artificial Intelligence in the classroom: the relevance of AI literacy, prompt engineering, and critical thinking in modern education. International Journal of Educational Technology in Higher Education, 21(1), 15. https://doi.org/10.1186/s41239-024-00448-3
Tricco, A. C., Lillie, E., Zarin, W., O'Brien, K. K., Colquhoun, H., Levac, D., ... & Straus, S. E. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Annals of internal medicine, 169(7), 467-473. DOI: 10.7326/M18-0850
Arksey, H., & O'malley, L. (2005). Scoping studies: towards a methodological framework. International journal of social research methodology, 8(1), 19-32. DOI: 10.1080/1364557032000119616
Peters, M. D., Godfrey, C., McInerney, P., Munn, Z., Tricco, A. C., & Khalil, H. (2020). Scoping reviews. JBI manual for evidence synthesis, 10, 10-46658. https://doi.org/10.46658/JBIMES-20-12
Li, W. (2022). Analysis of piano performance characteristics by deep learning and artificial intelligence and its application in piano teaching. Frontiers in Psychology, 12, 751406. DOI: 10.3389/fpsyg.2021.751406
Liao, Y. (2022). Educational evaluation of piano performance by the deep learning neural network model. Mobile Information Systems, 2022(1), 6975824. https://doi.org/10.1155/2022/6975824
Huang, N., & Ding, X. (2022). Piano music teaching under the background of artificial intelligence. Wireless Communications and Mobile Computing, 2022(1), 5816453.
https://doi.org/10.1155/2022/5816453
Chen, C. C., Hung, P., Eğrioğlu, E., & Hsiao, K. L. (Eds.). (2022). Deep Learning in Adaptive Learning: Educational Behavior and Strategy. Frontiers Media SA.
Cui, K. (2023). Artificial intelligence and creativity: piano teaching with augmented reality applications. Interactive Learning Environments, 31(10), 7017-7028. https://doi.org/10.1080/10494820.2022.2059520
Calvo-Zaragoza, J., Jr, J. H., & Pacha, A. (2020). Understanding optical music recognition. ACM Computing Surveys (CSUR), 53(4), 1-35. DOI: 10.1145/3397499
Shatri, E., & Fazekas, G. (2020). Optical music recognition: State of the art and major challenges. arXiv preprint arXiv:2006.07885.
https://doi.org/10.48550/arXiv.2006.07885
Lee, M., Kim, H., Moon, M., & Park, S. M. (2021). Computer-Vision-Based Advanced Optical Music Recognition System. Journal of Computational and Theoretical Nanoscience, 18(5), 1345-1351. DOI:10.1166/jctn.2021.9626
Nugroho, D. R., & Zahra, A. (2024). Musical Note Position and Duration Recognition Model in Optical Music Recognition Using Convolutional Neural Network. Journal of Image and Graphics, 12(1). DOI:10.1504/IJART.2021.115764
Andrea, Paoline, & Zahra, A. (2021). Music note position recognition in optical music recognition using convolutional neural network. International Journal of Arts and Technology, 13(1), 45-60. DOI:10.1504/IJART.2021.10035633
Ríos-Vila, A., Calvo-Zaragoza, J., & Paquet, T. (2024, August). Sheet music transformer: End-to-end optical music recognition beyond monophonic transcription. In International Conference on Document Analysis and Recognition (pp. 20-37). Cham: Springer Nature Switzerland.
https://doi.org/10.48550/arXiv.2402.07596
Ríos-Vila, A., Inesta, J. M., & Calvo-Zaragoza, J. (2022, April). On the use of transformers for end-to-end optical music recognition. In Iberian Conference on Pattern Recognition and Image Analysis (pp. 470-481). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-04881-4_37
Wang, A., & Mukaidani, H. (2021, June). An efficient piano performance evaluation model using DTW based on deep learning. In 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE) (pp. 1-6). IEEE. DOI:10.1109/ISIE45552.2021.9576338
Kim, H., Ramoneda, P., Miron, M., & Serra, X. (2022). An overview of automatic piano performance assessment within the music education context. DOI:10.5220/0011137600003182
Ariza, I., Tardón, L. J., Barbancho, A. M., De-Torres, I., & Barbancho, I. (2022). Bi-LSTM neural network for EEG-based error detection in musicians' performance. Biomedical Signal Processing and Control, 78, 103885. https://doi.org/10.1016/j.bspc.2022.103885
Zhao, J., & Yu, K. (2024, September). Recognition and Error Correction of Piano Playing Music based on Spatial Attention Mechanism with Convolutional Neural Network. In 2024 International Conference on Distributed Systems, Computer Networks and Cybersecurity (ICDSCNC) (pp. 1-5). IEEE.
DOI: 10.1109/ICDSCNC62492.2024.10941279
Hernandez-Olivan, C., & Beltran, J. R. (2022). Music composition with deep learning: A review. Advances in speech and music technology: computational aspects and applications, 25-50.
https://doi.org/10.48550/arXiv.2108.12290
Yang, J., Zhou, Y., & Lu, Y. (2023). Multimedia Identification and Analysis Algorithm of Piano Performance Music Based on Deep Learning. Journal of electrical systems, 19(4). https://doi.org/10.52783/jes.632
Amm, V., Chandran, K., Engeln, L., & McGinity, M. (2024). Mixed reality strategies for piano education. Frontiers in Virtual Reality, 5, 1397154. DOI: 10.3389/frvir.2024.1397154
Rigby, L., Wünsche, B. C., & Shaw, A. (2020, December). piARno-an augmented reality piano tutor. In Proceedings of the 32nd Australian conference on human-computer interaction (pp. 481-491). https://doi.org/10.1145/3441000.3441039
Simion, A., Iftene, A., & Gîfu, D. (2021). An Augmented Reality Piano Learning Tool. RoCHI, 2021, 134-141. DOI:10.37789/rochi.2021.1.1.21
Stanbury, A. J., Said, I., & Kang, H. J. (2021, December). Holokeys: Interactive piano education using augmented reality and iot. In Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology (pp. 1-3). https://doi.org/10.1145/3489849.3489921
Molero, D., Schez-Sobrino, S., Vallejo, D., Glez-Morcillo, C., & Albusac, J. (2021). A novel approach to learning music and piano based on mixed reality and gamification. Multimedia Tools and Applications, 80(1), 165-186. DOI: 10.1007/s11042-020-09678-9
Graf, M., & Barthet, M. (2023). Combining vision and emg-based hand tracking for extended reality musical instruments. arXiv preprint arXiv:2307.10203.
https://doi.org/10.48550/arXiv.2307.10203
Ng, S. C., Lui, A. K., & Kwok, A. C. (2015, July). Easy-to-learn piano: A mobile application for learning basic music theory and piano skill. In International Conference on Technology in Education (pp. 103-112). Berlin, Heidelberg: Springer Berlin Heidelberg. DOI:10.1007/978-3-662-48978-9_10
Xia, Y. (2020). Resource scheduling for piano teaching system of internet of things based on mobile edge computing. Computer Communications, 158, 73-84. https://doi.org/10.1016/j.comcom.2020.04.056
Yan, L. (2019). Design of piano teaching system based on internet of things technology. Journal of Intelligent & Fuzzy Systems, 37(5), 5905-5913. DOI:10.3233/JIFS-179172
Fang, B., & Liang, X. (2023). Design and application of cloud computing recommendation based on genetic algorithm in piano online course video system. DOI:10.21203/rs.3.rs-2709888/v1
Ruan, W. (2024). Increasing student motivation to learn the piano using modern digital technologies: independent piano learning with the soft Mozart app. Current Psychology, 43(44), 33998-34008. DOI: 10.1007/s12144-024-06924-3
Yao, Y. (2023). Online and offline hybrid teaching mode of piano education under the background of big data and Internet of Things. Journal of Computational Methods in Science and Engineering, 23(2), 715-724. https://doi.org/10.3233/JCM-226640
Xue, X., & Jia, Z. (2022). The Piano‐Assisted Teaching System Based on an Artificial Intelligent Wireless Network. Wireless Communications and Mobile Computing, 2022(1), 5287172.
https://doi.org/10.1155/2022/5287172
Li, J. (2022). Study on integration and application of artificial intelligence and wireless network in piano music teaching. Computational Intelligence and Neuroscience, 2022(1), 8745833.
https://doi.org/10.1155/2022/8745833
Li, M. (2016). Smart home education and teaching effect of multimedia network teaching platform in piano music education. International Journal of Smart Home, 10(11), 119-132. DOI:10.14257/ijsh.2016.10.11.11