Main Article Content
Abstract
Deep Vein Thrombosis (DVT) demonstrates considerable treatment response heterogeneity, with 40-60% of patients developing complications despite standard anticoagulation therapy. Accurate prediction of individual treatment outcomes remains an unmet clinical need. This study develops and validates a machine learning-based model to predict symptom Improvement Rate (IPR) using retrospective data from 403 hospitalized DVT patients (2018-2023). Six predictive features are identified using Random Forest-based Recursive Feature Elimination (RFE): age, white blood cell count, Activated Partial Thromboplastin Time (APTT), Thrombin Time (TT), surgical intervention status, and baseline symptom severity. The regularized eXtreme Gradient Boosting (XGBoost) algorithm achieves optimal performance with a test coefficient of determination (R²) of 0.60, Root Mean Square Error (RMSE) of 12.36, and five-fold cross-validation R² of 0.58 ± 0.07. SHapley Additive exPlanations (SHAP) analysis reveals that APTT and surgical intervention are the strongest predictors of treatment response. The validated model is deployed as a publicly accessible web-based clinical decision support tool, enabling real-time outcome prediction at the point of care. This research establishes a practical framework bridging predictive analytics and clinical practice, facilitating evidence-based, personalized DVT management strategies.
Keywords
Article Details
References
- S. Wolf et al., "Epidemiology of deep vein thrombosis," Vasa, 2024.doi: 10.1024/0301-1526/a001145
- G. Wagner et al., "Prevalence and incidence of venous thromboembolism in geriatric patients admitted to long-term care hospitals," Scientific reports, vol. 14, no. 1, p. 17737, 2024. doi:10.1038/s41598-024-67480-1
- S. Cheng et al., "Analysis of risk factors of postoperative lower extremity deep venous thrombosis in patients with cervical cancer," Clinical and Applied Thrombosis/Hemostasis, vol. 30, p. 10760296241240747, 2024. doi:10.1177/10760296241240747
- J. Björklund et al., "Risk of venous thromboembolic events after surgery for cancer," JAMA network open, vol. 7, no. 2, pp. e2354352-e2354352, 2024. doi:10.1001/jamanetworkopen.2023.54352
- M.-E. Mathieu et al., "Management and outcomes of superficial vein thrombosis: a single-center retrospective study," Research and Practice in Thrombosis and Haemostasis, vol. 8, no. 1, p. 102263, 2024. doi:10.1016/j.rpth.2023.102263
- M. Betensky et al., "Recommendations for standardized definitions, clinical assessment, and future research in pediatric clinically unsuspected venous thromboembolism: communication from the ISTH SSC subcommittee on pediatric and neonatal thrombosis and hemostasis," Journal of Thrombosis and Haemostasis, vol. 20, no. 7, pp. 1729-1734, 2022. doi:10.1111/jth.15731
- B. Cross, R. M. Turner, J. E. Zhang, and M. Pirmohamed, "Being precise with anticoagulation to reduce adverse drug reactions: are we there yet?," The pharmacogenomics journal, vol. 24, no. 2, p. 7, 2024. doi:10.1038/s41397-024-00329-y
- A. Kholmukhamedov, D. Subbotin, A. Gorin, and R. Ilyassov, "Anticoagulation management: current landscape and future trends," Journal of Clinical Medicine, vol. 14, no. 5, p. 1647, 2025. doi:10.3390/jcm14051647
- L. Khider et al., "Acute phase determinant of post-thrombotic syndrome: A review of the literature," Thrombosis Research, vol. 238, pp. 11-18, 2024. doi:10.1016/j.thromres.2024.04.004
- M. R. Gil, J. Pantanowitz, and H. H. Rashidi, "Venous thromboembolism in the era of machine learning and artificial intelligence in medicine," Thrombosis Research, vol. 242, p. 109121, 2024. doi:10.1016/j.thromres.2024.109121
- S. A. Alowais et al., "Revolutionizing healthcare: the role of artificial intelligence in clinical practice," BMC medical education, vol. 23, no. 1, p. 689, 2023. doi:10.1186/s12909-023-04698-z
- A.-D. Anghele, V. Marina, L. Dragomir, C. A. Moscu, M. Anghele, and C. Anghel, "Predicting Deep Venous Thrombosis Using Artificial Intelligence: A Clinical Data Approach," Bioengineering, vol. 11, no. 11, p. 1067, 2024. doi:10.3390/bioengineering11111067
- K. Nothnagel and M. F. Aslam, "Evaluating the benefits of machine learning for diagnosing deep vein thrombosis compared with gold standard ultrasound: a feasibility study," BJGP open, vol. 8, no. 4, 2024. doi:10.3399/BJGPO.2024.0057
- W. Sheng, X. Wang, W. Xu, Z. Hao, H. Ma, and S. Zhang, "Development and validation of machine learning models for venous thromboembolism risk assessment at admission: a retrospective study," Frontiers in Cardiovascular Medicine, vol. 10, p. 1198526, 2023. doi:10.3389/fcvm.2023.1198526
- N. Cahan et al., "Multimodal fusion models for pulmonary embolism mortality prediction," Scientific Reports, vol. 13, no. 1, p. 7544, 2023. doi:10.1038/s41598-023-34303-8
- L. Z. Hou Yufen, "Diagnostic and Efficacy Criteria for Deep Venous Thrombosis of the Lower Extremities (Revised in 2015)," Chin J Integr Tradit West Med SurgeryZhong Guo Zhong Xi Yi Jie He Wai Ke Za Zhi, vol. 22, no. 5, pp. 520-520, 2016.
- F. Dentali et al., "Clinical course of isolated distal deep vein thrombosis in patients with active cancer: a multicenter cohort study," Journal of thrombosis and haemostasis, vol. 15, no. 9, pp. 1757-1763, 2017. doi:10.1111/jth.13761
- P. C. Kruger, J. W. Eikelboom, J. D. Douketis, and G. J. Hankey, "Deep vein thrombosis: update on diagnosis and management," Medical Journal of Australia, vol. 210, no. 11, pp. 516-524, 2019. doi:10.5694/mja2.50201
- F. Xing, L. Li, Y. Long, and Z. Xiang, "Admission prevalence of deep vein thrombosis in elderly Chinese patients with hip fracture and a new predictor based on risk factors for thrombosis screening," BMC musculoskeletal disorders, vol. 19, no. 1, p. 444, 2018. doi:10.1186/s12891-018-2371-5
- W. Li, Z. Chuanlin, M. Shaoyu, C. H. Yeh, C. Liqun, and Z. Zeju, "Catheter-directed thrombolysis for patients with acute lower extremity deep vein thrombosis: a meta-analysis," Revista latino-americana de enfermagem, vol. 26, p. e2990, 2018. doi:10.1590/1518-8345.2309.2990
- S. Z. Goldhaber, E. A. Magnuson, K. M. Chinnakondepalli, D. J. Cohen, and S. Vedantham, "Catheter-directed thrombolysis for deep vein thrombosis: 2021 update," Vascular Medicine, vol. 26, no. 6, pp. 662-669, 2021. doi:10.1177/1358863X211042930
- X. Du et al., "Long-term outcome of catheter-directed thrombolysis in pregnancy-related venous thrombosis," Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, vol. 25, p. 3771, 2019. doi:10.12659/msm.914592
- M. J. Garcia et al., "Endovascular management of deep vein thrombosis with rheolytic thrombectomy: final report of the prospective multicenter PEARL (Peripheral Use of AngioJet Rheolytic Thrombectomy with a Variety of Catheter Lengths) registry," Journal of Vascular and Interventional Radiology, vol. 26, no. 6, pp. 777-785, 2015. doi:10.1016/j.jvir.2015.01.036
- H. İner, "The treatment indication affects the time in therapeutic range," Cardiovascular Surgery and Interventions, vol. 9, no. 3, pp. 147-151, 2022. doi:10.5606/e-cvsi.2022.1392
- J. A. Kline, Z. P. Kahler, and D. M. Beam, "Outpatient treatment of low-risk venous thromboembolism with monotherapy oral anticoagulation: patient quality of life outcomes and clinician acceptance," Patient preference and adherence, pp. 561-569, 2016. doi:10.2147/ppa.s104446
- A. Abdel-Hafez et al., "Predicting therapeutic response to unfractionated heparin therapy: machine learning approach," Interactive Journal of Medical Research, vol. 11, no. 2, p. e34533, 2022. doi:10.2196/34533
- A. Shaikh et al., "Six-month outcomes of mechanical thrombectomy for treating deep vein thrombosis: analysis from the 500-patient CLOUT registry," Cardiovascular and interventional radiology, vol. 46, no. 11, pp. 1571-1580, 2023. doi:10.1007/s00270-023-03509-8
- M. Yao et al., "Neutrophil extracellular traps mediate deep vein thrombosis: from mechanism to therapy," Frontiers in immunology, vol. 14, p. 1198952, 2023. doi:10.3389/fimmu.2023.1198952
- J. Ding, X. Yue, X. Tian, Z. Liao, R. Meng, and M. Zou, "Association between inflammatory biomarkers and venous thromboembolism: a systematic review and meta-analysis," Thrombosis Journal, vol. 21, no. 1, p. 82, 2023. doi:10.1186/s12959-023-00526-y
- N. Marlow, M. Eckert, G. Sharplin, I. Gwilt, and K. Carson-Chahhoud, "Graphical User Interface Development for a Hospital-Based Predictive Risk Tool: Protocol for a Co-Design Study," JMIR Research Protocols, vol. 12, no. 1, p. e47717, 2023. doi:10.2196/47717
- S. Sachdeva et al., "Unraveling the role of cloud computing in health care system and biomedical sciences," Heliyon, vol. 10, no. 7, 2024. doi:10.1016/j.heliyon.2024.e29044
- A. V. Ponce‐Bobadilla, V. Schmitt, C. S. Maier, S. Mensing, and S. Stodtmann, "Practical guide to SHAP analysis: Explaining supervised machine learning model predictions in drug development," Clinical and translational science, vol. 17, no. 11, p. e70056, 2024. doi:10.1111/cts.70056
- I. D. Mienye et al., "A survey of explainable artificial intelligence in healthcare: Concepts, applications, and challenges," Informatics in Medicine Unlocked, vol. 51, p. 101587, 2024. doi:10.1016/j.imu.2024.101587
- J. S. Chang et al., "Continuous multimodal data supply chain and expandable clinical decision support for oncology," npj Digital Medicine, vol. 8, no. 1, p. 128, 2025. doi:10.1038/s41746-025-01508-2
- B. Vasey et al., "Reporting guideline for the early stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI," bmj, vol. 377, 2022. doi:10.1038/s41591-022-01772-9
References
S. Wolf et al., "Epidemiology of deep vein thrombosis," Vasa, 2024.doi: 10.1024/0301-1526/a001145
G. Wagner et al., "Prevalence and incidence of venous thromboembolism in geriatric patients admitted to long-term care hospitals," Scientific reports, vol. 14, no. 1, p. 17737, 2024. doi:10.1038/s41598-024-67480-1
S. Cheng et al., "Analysis of risk factors of postoperative lower extremity deep venous thrombosis in patients with cervical cancer," Clinical and Applied Thrombosis/Hemostasis, vol. 30, p. 10760296241240747, 2024. doi:10.1177/10760296241240747
J. Björklund et al., "Risk of venous thromboembolic events after surgery for cancer," JAMA network open, vol. 7, no. 2, pp. e2354352-e2354352, 2024. doi:10.1001/jamanetworkopen.2023.54352
M.-E. Mathieu et al., "Management and outcomes of superficial vein thrombosis: a single-center retrospective study," Research and Practice in Thrombosis and Haemostasis, vol. 8, no. 1, p. 102263, 2024. doi:10.1016/j.rpth.2023.102263
M. Betensky et al., "Recommendations for standardized definitions, clinical assessment, and future research in pediatric clinically unsuspected venous thromboembolism: communication from the ISTH SSC subcommittee on pediatric and neonatal thrombosis and hemostasis," Journal of Thrombosis and Haemostasis, vol. 20, no. 7, pp. 1729-1734, 2022. doi:10.1111/jth.15731
B. Cross, R. M. Turner, J. E. Zhang, and M. Pirmohamed, "Being precise with anticoagulation to reduce adverse drug reactions: are we there yet?," The pharmacogenomics journal, vol. 24, no. 2, p. 7, 2024. doi:10.1038/s41397-024-00329-y
A. Kholmukhamedov, D. Subbotin, A. Gorin, and R. Ilyassov, "Anticoagulation management: current landscape and future trends," Journal of Clinical Medicine, vol. 14, no. 5, p. 1647, 2025. doi:10.3390/jcm14051647
L. Khider et al., "Acute phase determinant of post-thrombotic syndrome: A review of the literature," Thrombosis Research, vol. 238, pp. 11-18, 2024. doi:10.1016/j.thromres.2024.04.004
M. R. Gil, J. Pantanowitz, and H. H. Rashidi, "Venous thromboembolism in the era of machine learning and artificial intelligence in medicine," Thrombosis Research, vol. 242, p. 109121, 2024. doi:10.1016/j.thromres.2024.109121
S. A. Alowais et al., "Revolutionizing healthcare: the role of artificial intelligence in clinical practice," BMC medical education, vol. 23, no. 1, p. 689, 2023. doi:10.1186/s12909-023-04698-z
A.-D. Anghele, V. Marina, L. Dragomir, C. A. Moscu, M. Anghele, and C. Anghel, "Predicting Deep Venous Thrombosis Using Artificial Intelligence: A Clinical Data Approach," Bioengineering, vol. 11, no. 11, p. 1067, 2024. doi:10.3390/bioengineering11111067
K. Nothnagel and M. F. Aslam, "Evaluating the benefits of machine learning for diagnosing deep vein thrombosis compared with gold standard ultrasound: a feasibility study," BJGP open, vol. 8, no. 4, 2024. doi:10.3399/BJGPO.2024.0057
W. Sheng, X. Wang, W. Xu, Z. Hao, H. Ma, and S. Zhang, "Development and validation of machine learning models for venous thromboembolism risk assessment at admission: a retrospective study," Frontiers in Cardiovascular Medicine, vol. 10, p. 1198526, 2023. doi:10.3389/fcvm.2023.1198526
N. Cahan et al., "Multimodal fusion models for pulmonary embolism mortality prediction," Scientific Reports, vol. 13, no. 1, p. 7544, 2023. doi:10.1038/s41598-023-34303-8
L. Z. Hou Yufen, "Diagnostic and Efficacy Criteria for Deep Venous Thrombosis of the Lower Extremities (Revised in 2015)," Chin J Integr Tradit West Med SurgeryZhong Guo Zhong Xi Yi Jie He Wai Ke Za Zhi, vol. 22, no. 5, pp. 520-520, 2016.
F. Dentali et al., "Clinical course of isolated distal deep vein thrombosis in patients with active cancer: a multicenter cohort study," Journal of thrombosis and haemostasis, vol. 15, no. 9, pp. 1757-1763, 2017. doi:10.1111/jth.13761
P. C. Kruger, J. W. Eikelboom, J. D. Douketis, and G. J. Hankey, "Deep vein thrombosis: update on diagnosis and management," Medical Journal of Australia, vol. 210, no. 11, pp. 516-524, 2019. doi:10.5694/mja2.50201
F. Xing, L. Li, Y. Long, and Z. Xiang, "Admission prevalence of deep vein thrombosis in elderly Chinese patients with hip fracture and a new predictor based on risk factors for thrombosis screening," BMC musculoskeletal disorders, vol. 19, no. 1, p. 444, 2018. doi:10.1186/s12891-018-2371-5
W. Li, Z. Chuanlin, M. Shaoyu, C. H. Yeh, C. Liqun, and Z. Zeju, "Catheter-directed thrombolysis for patients with acute lower extremity deep vein thrombosis: a meta-analysis," Revista latino-americana de enfermagem, vol. 26, p. e2990, 2018. doi:10.1590/1518-8345.2309.2990
S. Z. Goldhaber, E. A. Magnuson, K. M. Chinnakondepalli, D. J. Cohen, and S. Vedantham, "Catheter-directed thrombolysis for deep vein thrombosis: 2021 update," Vascular Medicine, vol. 26, no. 6, pp. 662-669, 2021. doi:10.1177/1358863X211042930
X. Du et al., "Long-term outcome of catheter-directed thrombolysis in pregnancy-related venous thrombosis," Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, vol. 25, p. 3771, 2019. doi:10.12659/msm.914592
M. J. Garcia et al., "Endovascular management of deep vein thrombosis with rheolytic thrombectomy: final report of the prospective multicenter PEARL (Peripheral Use of AngioJet Rheolytic Thrombectomy with a Variety of Catheter Lengths) registry," Journal of Vascular and Interventional Radiology, vol. 26, no. 6, pp. 777-785, 2015. doi:10.1016/j.jvir.2015.01.036
H. İner, "The treatment indication affects the time in therapeutic range," Cardiovascular Surgery and Interventions, vol. 9, no. 3, pp. 147-151, 2022. doi:10.5606/e-cvsi.2022.1392
J. A. Kline, Z. P. Kahler, and D. M. Beam, "Outpatient treatment of low-risk venous thromboembolism with monotherapy oral anticoagulation: patient quality of life outcomes and clinician acceptance," Patient preference and adherence, pp. 561-569, 2016. doi:10.2147/ppa.s104446
A. Abdel-Hafez et al., "Predicting therapeutic response to unfractionated heparin therapy: machine learning approach," Interactive Journal of Medical Research, vol. 11, no. 2, p. e34533, 2022. doi:10.2196/34533
A. Shaikh et al., "Six-month outcomes of mechanical thrombectomy for treating deep vein thrombosis: analysis from the 500-patient CLOUT registry," Cardiovascular and interventional radiology, vol. 46, no. 11, pp. 1571-1580, 2023. doi:10.1007/s00270-023-03509-8
M. Yao et al., "Neutrophil extracellular traps mediate deep vein thrombosis: from mechanism to therapy," Frontiers in immunology, vol. 14, p. 1198952, 2023. doi:10.3389/fimmu.2023.1198952
J. Ding, X. Yue, X. Tian, Z. Liao, R. Meng, and M. Zou, "Association between inflammatory biomarkers and venous thromboembolism: a systematic review and meta-analysis," Thrombosis Journal, vol. 21, no. 1, p. 82, 2023. doi:10.1186/s12959-023-00526-y
N. Marlow, M. Eckert, G. Sharplin, I. Gwilt, and K. Carson-Chahhoud, "Graphical User Interface Development for a Hospital-Based Predictive Risk Tool: Protocol for a Co-Design Study," JMIR Research Protocols, vol. 12, no. 1, p. e47717, 2023. doi:10.2196/47717
S. Sachdeva et al., "Unraveling the role of cloud computing in health care system and biomedical sciences," Heliyon, vol. 10, no. 7, 2024. doi:10.1016/j.heliyon.2024.e29044
A. V. Ponce‐Bobadilla, V. Schmitt, C. S. Maier, S. Mensing, and S. Stodtmann, "Practical guide to SHAP analysis: Explaining supervised machine learning model predictions in drug development," Clinical and translational science, vol. 17, no. 11, p. e70056, 2024. doi:10.1111/cts.70056
I. D. Mienye et al., "A survey of explainable artificial intelligence in healthcare: Concepts, applications, and challenges," Informatics in Medicine Unlocked, vol. 51, p. 101587, 2024. doi:10.1016/j.imu.2024.101587
J. S. Chang et al., "Continuous multimodal data supply chain and expandable clinical decision support for oncology," npj Digital Medicine, vol. 8, no. 1, p. 128, 2025. doi:10.1038/s41746-025-01508-2
B. Vasey et al., "Reporting guideline for the early stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI," bmj, vol. 377, 2022. doi:10.1038/s41591-022-01772-9