Main Article Content
Abstract
This paper proposes and evaluates a unified machine-learning framework for enterprise portfolio management that integrates multi-horizon financial forecasting, unsupervised risk detection, and explainable reporting within a single pipeline. Using a synthetic but structurally realistic ERP-style dataset comprising 162,000 project–month records with 24 financial and operational features, the study adopts a quantitative design based on multi-source feature engineering, expanding-window temporal cross-validation, and benchmarking of five forecasting models (Linear Regression, Random Forest, XGBoost, LightGBM, CatBoost) across 1-, 3-, and 6-month horizons. Hyperparameters for the strongest models are tuned with Optuna, and three unsupervised detectors (Isolation Forest, COPOD, LODA) are applied to scaled numeric features, while SHAP is used to generate global and local explanations. Results show that gradient-boosted trees substantially outperform linear baselines, reducing MAE by roughly 25–40% and achieving R² ≈ 0.63 at 1 month, ≈ 0.57 at 3 months, and ≈ 0.43 at 6 months, with open commitments, backlog, change orders, and schedule slippage emerging as dominant drivers of future spend. The anomaly layer flags around 2% of records as high risk, capturing patterns such as vendor rate spikes, zero-commitment overspend, stalled backlog, and abrupt forecast collapses. Rather than introducing novel algorithms, this work contributes a unified, SHAP-enabled architecture that enhances auditability and governance by transforming model outputs into defensible financial narratives and providing a practical blueprint for future work to extend to real ERP data, streaming architectures, and human-in-the-loop risk governance.
Keywords
Article Details
References
- N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic Minority Over-sampling Technique,” J. Artif. Intell. Res., vol. 16, pp. 321–357, 2002, doi: 10.1613/jair.953.
- T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, San Francisco, CA, USA, 2016, pp. 785–794, doi: 10.1145/2939672.2939785.
- F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation Forest,” 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413–422, doi: 10.1109/ICDM.2008.17.
- S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “The M4 Competition: Results, Findings, and Conclusions,” Int. J. Forecast., vol. 34, no. 4, pp. 802–808, 2018, doi: 10.1016/j.ijforecast.2018.06.001.
- S. M. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting Model Predictions,” in Proc. 31st Conf. Neural Inf. Process. Syst. (NeurIPS), Long Beach, CA, USA, 2017. (no DOI — see arXiv:1705.07874)
- H. He and E. A. Garcia, “Learning from Imbalanced Data,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, 2009, doi: 10.1109/TKDE.2008.239.
- M. Buda, A. Maki, and M. A. Mazurowski, “A Systematic Study of the Class Imbalance Problem in Convolutional Neural Networks,” Neural Netw., vol. 106, pp. 249–259, 2018, doi: 10.1016/j.neunet.2018.07.011.
- C. Cortes and V. Vapnik, “Support-Vector Networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297, 1995, doi: 10.1007/BF00994018.
- H. Zou and T. Hastie, “Regularization and Variable Selection via the Elastic Net,” J. Roy. Stat. Soc. B, vol. 67, no. 2, pp. 301–320, 2005, doi: 10.1111/j.1467-9868.2005.00503.x.
- J. Platt, “Probabilistic Outputs for Support Vector Machines,” in Advances in Large Margin Classifiers, MIT Press, 1999, pp. 61–74.
- V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A Survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 1–58, 2009, doi: 10.1145/1541880.1541882.
- C. C. Aggarwal, Outlier Analysis, 2nd ed., Springer, 2017. https://doi.org/10.1007/978-3-319-47578-3
- A.Odunaike, “Integrating real-time financial data streams to enhance dynamic risk modeling and portfolio decision accuracy,” Int. J. Comput. Appl. Technol. Res., vol. 14, no. 8, pp. 1–16, 2025, doi: 10.7753/IJCATR1408.1001.
- V. Kalvala and A. Gupta, “Integrating Machine Learning and Statistical Models in Enterprise Risk Analysis,” 2025 4th International Conference on Sentiment Analysis and Deep Learning (ICSADL), Bhimdatta, Nepal, 2025, pp. 852–861, doi: 10.1109/ICSADL65848.2025.10933366.
- K. U. Apu, M. M. Rahman, A. B. Hoque, and M. Bhuiyan, “Forecasting future investment value with machine learning, neural networks, and ensemble learning,” Rev. Appl. Sci. Technol., vol. 1, no. 2, pp. 1–25, 2022, doi: 10.63125/edxgjg56.
- P. S. R. P. Muntala and S. K. Jangam, “Automated Risk Scoring in Oracle Fusion ERP Using Machine Learning,” Int. J. Artif. Intell. Data Sci. Mach. Learn., vol. 5, no. 4, pp. 105–116, 2024, doi: 10.63282/3050-9262.IJAIDSML-V5I4P111.
- Q. Xin, “Construction of a machine-learning-based risk management evaluation model for enterprise financial reporting,” Proc. Int. Conf. Commun., Inf., Digit. Technol. (CIDT2024), vol. 13185, pp. 19–26, 2024, doi: 10.1117/12.3032790.
- C. P. Vijay, “A Deep Learning Approach for Financial Risk Prediction in Enterprise Management Systems,” Eksplorium, vol. 46, no. 1, pp. 1579–1597, 2025.
- X. Shi, Y. Zhang, M. Yu, and L. Zhang, “Deep learning for enhanced risk management: A novel approach to analyzing financial reports,” PeerJ Comput. Sci., vol. 11, p. e2661, doi: 10.7717/peerj-cs.2661.
- Y. Cui and F. Yao, “Integrating deep learning and reinforcement learning for enhanced financial risk forecasting in supply chain management,” J. Knowl. Econ., vol. 15, no. 4, pp. 20091–20110, 2024, doi: 10.1007/s13132-024-01946-5.
- C. Oko-Odion, A. Okunuga, and O. I. Okunbor, “Revolutionizing financial risk assessment through deep learning-driven business analytics,” 2025, doi: 10.30574/wjarr.2025.25.1.0327.
- L. Hamzat, “Holistic enterprise risk and cost governance through real-time financial monitoring and predictive intelligence,” 2025, doi: 10.5281/zenodo.15377535.
- O. O. Fagbore et al., “Predictive Analytics for Portfolio Risk Using Historical Fund Data,” 2022, doi: 10.54660/.JFMR.2022.3.1.223-240.
- A.O. Ogedengbe et al., “A Predictive Compliance Analytics Framework Using AI,” Shodhshauryam Int. Sci. Res. J., vol. 6, no. 4, pp. 171–195, 2023, doi: 10.32628/SHISRRJ.
- X. Wang, Z. Xue and Y. Chen, “Financial Risk Warning and Traceability for Manufacturing Enterprises: A Three-Stage Framework Based on Ensemble Learning Algorithm,” IEEE Trans. Comput. Soc. Syst., vol. 12, no. 6, pp. 5061–5079, Dec. 2025, doi: 10.1109/TCSS.2025.3576991.
- S. Thambireddy et al., “AI-Enabled SAP Enterprise Systems: A Comprehensive Business Use Case Survey,” Proc. ICSCSA, pp. 1045–1052, Aug. 2025, doi: 10.1109/ICSCSA66339.2025.11170704.
- N. Rane, S. Choudhary, and J. Rane, “Artificial intelligence and machine learning in business intelligence, finance, and e-commerce,” 2024, doi: 10.2139/ssrn.4843988.
- K. Abiodun et al., “Risk-Sensitive Financial Dashboards with Embedded ML,” Int. J. Sci. Res. Mod. Technol., vol. 3, no. 2, pp. 1–18, 2024, doi: 10.38124/ijsrmt.v3i2.678.
- N. L. Rane et al., “AI, ML, and DL for advanced business strategies,” Partners Univ. Innov. J., vol. 2, no. 3, pp. 147–171, 2024, doi: 10.5281/zenodo.12208298.
- K. R. Ahmed et al., “Deep learning framework for interpretable supply chain forecasting,” Sci. Rep., vol. 15, p. 26355, 2025, doi: 10.1038/s41598-025-11510-z.
- O. O. Elumilade et al., “The role of data analytics in strengthening financial risk assessment,” Iconic Res. Eng. J., vol. 6, no. 10, pp. 324–338, 2023, doi: 10.64388/IREV6I10-1704359.
- J. G. George, “Enterprise architecture for post-merger financial systems integration,” Aust. J. ML Res. App., vol. 3, no. 2, p. 429, 2023.
- G. Stephen, “Leveraging AI for Strategic Decision-Making in Biopharmaceutical Program Management,” Int. J. Manag. Technol., vol. 12, no. 4, pp. 1–26, 2025, doi: 10.37745/ijmt.2013/vol12n4126.
- Oyeyipo et al., “A conceptual framework for transforming corporate finance through strategic growth,” Int. J. Adv. Multidiscip. Res. Stud., vol. 3, no. 5, pp. 1527–1538, 2023.
- G. Tripathi, “AI in Finance Institutions: Multiplying Output using SageMaker,” J. Comput. Sci. Technol. Stud., vol. 7, no. 5, pp. 94–101, 2025, doi: 10.32996/jcsts.2025.7.5.13.
- Nwoke, “Harnessing predictive analytics, machine learning, and scenario modeling,” Int. J. Comput. Appl. Technol. Res., 2025, doi: 10.7753/IJCATR1404.1010.
- Rane, Jayesh and Amol Chaudhari, Reshma and Rane, Nitin, Artificial Intelligence and Machine Learning for Supply Chain Resilience: Risk Assessment and Decision Making in Manufacturing Industry 4.0 and 5.0 (July 24, 2025). Available at SSRN: https://ssrn.com/abstract=5366932 or http://dx.doi.org/10.2139/ssrn.5366932
- X. Han et al., “Symmetry-Aware Credit Risk Modeling,” Symmetry, vol. 17, no. 3, 2025.
- DOI: 10.3390/sym17030341
- O. Irekponor, “Designing resilient AI architectures for predictive energy finance systems,” Int. J. Res. Publ. Rev., vol. 6, no. 6, pp. 73–100, 2025.
- N. A. Siddiqui, “Optimizing Business Decision-Making through AI-Enhanced BI Systems,” Strategic Data Manag. Innov., vol. 2, no. 1, pp. 202–223, 2025, doi: 10.71292/sdmi.v2i01.21.
- Rane, Nitin and Paramesha, Mallikarjuna and Choudhary, Saurabh and Rane, Jayesh, Business Intelligence and Business Analytics With Artificial Intelligence and Machine Learning: Trends, Techniques, and Opportunities (May 17, 2024). Available at SSRN: https://ssrn.com/abstract=4831920 or http://dx.doi.org/10.2139/ssrn.4831920.
- O. Famoti et al., “Data-Driven Risk Management in US Financial Institutions,” 2023. https://www.multiresearchjournal.com/admin/uploads/archives/archive-1739352974.pdf
- A.Ajuwon et al., “AI-Powered Transformations in Financial Services,” Eng. Technol. J., vol. 10, no. 6, pp. 5397–5415, 2025, doi: 10.47191/etj/v10i06.12.
- J. Rane, R. A. Chaudhari, and N. L. Rane, “Sustainable Supply Chain Resilience through AI,” Deep Science Publishing, 2025.ISBN:9789371856218, 9371856211
- A.Ahmed et al., “AI-driven innovations in modern banking,” J. Manag. Sci. Res. Rev., vol. 4, no. 3, pp. 1145–1183, 2025.
- Saiyed, “AI-Driven Innovations in Fintech,” Int. J. Elect. Comput. Eng. Res., vol. 5, no. 1, pp. 8–15, 2025.
- Adekunle et al., “Integrating AI-driven risk assessment frameworks in financial operations,” Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., vol. 9, no. 6, pp. 445–464, 2023, doi: 10.32628/IJSRCSEIT.
- A.Khaddam and A. Alzghoul, “AI-driven business intelligence for strategic energy and ESG management,” Int. J. Energy Econ. Policy, vol. 15, no. 4, p. 635, 2025, doi: 10.32479/ijeep.19820.
- A.Ojo, “A Data-Driven Framework for Project Risk Monitoring Using Predictive Analytics,” J. Manag. Dev. Res., vol. 2, no. 2, pp. 125–136, 2025, doi: 10.69739/jmdr.v2i2.1171.
- S. A. Mohammed, “Integrated Financial Ecosystems,” Indonesian J. Adv. Res. Technol., vol. 7, no. 7, 2025.
- O. Olubusola et al., “Machine learning in financial forecasting: A U.S. review,” World J. Adv. Res. Rev., vol. 21, no. 2, pp. 1969–1984, 2024, doi: 10.30574/wjarr.2024.21.2.0444.
- R. Paul, M. A. Rahman, and M. Nuruzzaman, “AI-Enabled Decision Support Systems for Infrastructure Project Management,” Rev. Appl. Sci. Technol., vol. 3, no. 4, pp. 29–47, 2024, doi: 10.63125/8d96m319.
- Oko-Odion and A. Angela, “Risk management frameworks for financial institutions,” Int. J. Sci. Res. Arch., vol. 14, no. 1, pp. 1182–1204, 2025, doi: 10.30574/ijsra.2025.14.1.0155.
- S. Uddin et al., “Hybrid reinforcement learning and knowledge graph framework for financial risk optimization,” Sci. Rep., vol. 15, no. 1, p. 29057, 2025, doi: 10.1038/s41598-025-14355-8.
- A.S. Adepoju, “Transforming administrative functions through AI,” Int. J. Res. Publ. Rev., vol. 6, no. 1, pp. 4300–4316, 2025, doi: 10.55248/gengpi.6.0125.0622.
- Hasan and M. O. Faruq, “AI-Augmented Risk Detection in Cybersecurity Compliance,” ASRC Procedia, vol. 1, no. 1, pp. 313–342, 2025, doi: 10.63125/49gs6175.
- Batz et al., “Integrating machine learning into business and management,” Humanit. Soc. Sci. Commun., vol. 12, no. 1, pp. 1–20, 2025, doi: 10.1057/s41599-025-04361-6.
- Y. S. Ahirrao et al., “AI-Powered Financial Strategy,” Emerg. Front. Libr. Amer. J. Eng. Technol., vol. 7, no. 9, pp. 126–151, 2025.
- U. Das, “Scaling Agile with AI,” IJSAT, vol. 16, no. 2, 2025. https://doi.org/10.71097/IJSAT.v16.i2.5874
- G. Luo, M. A. Arshad, and G. Luo, “Decision Trees for Strategic Choice,” Symmetry, vol. 17, no. 7, p. 976, 2025, doi: 10.3390/sym17070976.
- S. S. Parimi, “Automated Risk Assessment in SAP Financial Modules through Machine Learning,” SSRN Electron. J., 2019, doi: 10.2139/ssrn.4934897.
- A.Odunaike, “Integrating Real-Time Financial Data Streams…,” Int. J. Comput. Appl. Technol. Res., vol. 14, no. 8, pp. 1–16, 2025, doi: 10.7753/IJCATR1408.1001.
- Mendeley Data, “Dataset: w9mzf4vswh (Version 2),” Mendeley Data, Accessed: Feb. 10, 2025. [Online]. Available: https://data.mendeley.com/datasets/w9mzf4vswh/2
- U.S. General Services Administration, “Federal Procurement Data System (FPDS),” FPDS.gov, Accessed: Feb. 10, 2025. [Online]. Available: https://www.fpds.gov/
- California State Government, “Open Fiscal Data Portal,” Open Fiscal California, Accessed: Feb. 10, 2025. [Online]. Available: https://open.fiscal.ca.gov/
- Stanford University, “MCC: The Modeling Civil Courts Project,” Stanford Law School, Accessed: Feb. 10, 2025. [Online]. Available: https://mcc.law.stanford.edu/
- Government Transparency Project, “Databases Overview,” GovTransparency.eu, Accessed: Feb. 10, 2025. [Online]. Available: https://www.govtransparency.eu/category/databases/
References
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic Minority Over-sampling Technique,” J. Artif. Intell. Res., vol. 16, pp. 321–357, 2002, doi: 10.1613/jair.953.
T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, San Francisco, CA, USA, 2016, pp. 785–794, doi: 10.1145/2939672.2939785.
F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation Forest,” 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413–422, doi: 10.1109/ICDM.2008.17.
S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “The M4 Competition: Results, Findings, and Conclusions,” Int. J. Forecast., vol. 34, no. 4, pp. 802–808, 2018, doi: 10.1016/j.ijforecast.2018.06.001.
S. M. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting Model Predictions,” in Proc. 31st Conf. Neural Inf. Process. Syst. (NeurIPS), Long Beach, CA, USA, 2017. (no DOI — see arXiv:1705.07874)
H. He and E. A. Garcia, “Learning from Imbalanced Data,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, 2009, doi: 10.1109/TKDE.2008.239.
M. Buda, A. Maki, and M. A. Mazurowski, “A Systematic Study of the Class Imbalance Problem in Convolutional Neural Networks,” Neural Netw., vol. 106, pp. 249–259, 2018, doi: 10.1016/j.neunet.2018.07.011.
C. Cortes and V. Vapnik, “Support-Vector Networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297, 1995, doi: 10.1007/BF00994018.
H. Zou and T. Hastie, “Regularization and Variable Selection via the Elastic Net,” J. Roy. Stat. Soc. B, vol. 67, no. 2, pp. 301–320, 2005, doi: 10.1111/j.1467-9868.2005.00503.x.
J. Platt, “Probabilistic Outputs for Support Vector Machines,” in Advances in Large Margin Classifiers, MIT Press, 1999, pp. 61–74.
V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A Survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 1–58, 2009, doi: 10.1145/1541880.1541882.
C. C. Aggarwal, Outlier Analysis, 2nd ed., Springer, 2017. https://doi.org/10.1007/978-3-319-47578-3
A.Odunaike, “Integrating real-time financial data streams to enhance dynamic risk modeling and portfolio decision accuracy,” Int. J. Comput. Appl. Technol. Res., vol. 14, no. 8, pp. 1–16, 2025, doi: 10.7753/IJCATR1408.1001.
V. Kalvala and A. Gupta, “Integrating Machine Learning and Statistical Models in Enterprise Risk Analysis,” 2025 4th International Conference on Sentiment Analysis and Deep Learning (ICSADL), Bhimdatta, Nepal, 2025, pp. 852–861, doi: 10.1109/ICSADL65848.2025.10933366.
K. U. Apu, M. M. Rahman, A. B. Hoque, and M. Bhuiyan, “Forecasting future investment value with machine learning, neural networks, and ensemble learning,” Rev. Appl. Sci. Technol., vol. 1, no. 2, pp. 1–25, 2022, doi: 10.63125/edxgjg56.
P. S. R. P. Muntala and S. K. Jangam, “Automated Risk Scoring in Oracle Fusion ERP Using Machine Learning,” Int. J. Artif. Intell. Data Sci. Mach. Learn., vol. 5, no. 4, pp. 105–116, 2024, doi: 10.63282/3050-9262.IJAIDSML-V5I4P111.
Q. Xin, “Construction of a machine-learning-based risk management evaluation model for enterprise financial reporting,” Proc. Int. Conf. Commun., Inf., Digit. Technol. (CIDT2024), vol. 13185, pp. 19–26, 2024, doi: 10.1117/12.3032790.
C. P. Vijay, “A Deep Learning Approach for Financial Risk Prediction in Enterprise Management Systems,” Eksplorium, vol. 46, no. 1, pp. 1579–1597, 2025.
X. Shi, Y. Zhang, M. Yu, and L. Zhang, “Deep learning for enhanced risk management: A novel approach to analyzing financial reports,” PeerJ Comput. Sci., vol. 11, p. e2661, doi: 10.7717/peerj-cs.2661.
Y. Cui and F. Yao, “Integrating deep learning and reinforcement learning for enhanced financial risk forecasting in supply chain management,” J. Knowl. Econ., vol. 15, no. 4, pp. 20091–20110, 2024, doi: 10.1007/s13132-024-01946-5.
C. Oko-Odion, A. Okunuga, and O. I. Okunbor, “Revolutionizing financial risk assessment through deep learning-driven business analytics,” 2025, doi: 10.30574/wjarr.2025.25.1.0327.
L. Hamzat, “Holistic enterprise risk and cost governance through real-time financial monitoring and predictive intelligence,” 2025, doi: 10.5281/zenodo.15377535.
O. O. Fagbore et al., “Predictive Analytics for Portfolio Risk Using Historical Fund Data,” 2022, doi: 10.54660/.JFMR.2022.3.1.223-240.
A.O. Ogedengbe et al., “A Predictive Compliance Analytics Framework Using AI,” Shodhshauryam Int. Sci. Res. J., vol. 6, no. 4, pp. 171–195, 2023, doi: 10.32628/SHISRRJ.
X. Wang, Z. Xue and Y. Chen, “Financial Risk Warning and Traceability for Manufacturing Enterprises: A Three-Stage Framework Based on Ensemble Learning Algorithm,” IEEE Trans. Comput. Soc. Syst., vol. 12, no. 6, pp. 5061–5079, Dec. 2025, doi: 10.1109/TCSS.2025.3576991.
S. Thambireddy et al., “AI-Enabled SAP Enterprise Systems: A Comprehensive Business Use Case Survey,” Proc. ICSCSA, pp. 1045–1052, Aug. 2025, doi: 10.1109/ICSCSA66339.2025.11170704.
N. Rane, S. Choudhary, and J. Rane, “Artificial intelligence and machine learning in business intelligence, finance, and e-commerce,” 2024, doi: 10.2139/ssrn.4843988.
K. Abiodun et al., “Risk-Sensitive Financial Dashboards with Embedded ML,” Int. J. Sci. Res. Mod. Technol., vol. 3, no. 2, pp. 1–18, 2024, doi: 10.38124/ijsrmt.v3i2.678.
N. L. Rane et al., “AI, ML, and DL for advanced business strategies,” Partners Univ. Innov. J., vol. 2, no. 3, pp. 147–171, 2024, doi: 10.5281/zenodo.12208298.
K. R. Ahmed et al., “Deep learning framework for interpretable supply chain forecasting,” Sci. Rep., vol. 15, p. 26355, 2025, doi: 10.1038/s41598-025-11510-z.
O. O. Elumilade et al., “The role of data analytics in strengthening financial risk assessment,” Iconic Res. Eng. J., vol. 6, no. 10, pp. 324–338, 2023, doi: 10.64388/IREV6I10-1704359.
J. G. George, “Enterprise architecture for post-merger financial systems integration,” Aust. J. ML Res. App., vol. 3, no. 2, p. 429, 2023.
G. Stephen, “Leveraging AI for Strategic Decision-Making in Biopharmaceutical Program Management,” Int. J. Manag. Technol., vol. 12, no. 4, pp. 1–26, 2025, doi: 10.37745/ijmt.2013/vol12n4126.
Oyeyipo et al., “A conceptual framework for transforming corporate finance through strategic growth,” Int. J. Adv. Multidiscip. Res. Stud., vol. 3, no. 5, pp. 1527–1538, 2023.
G. Tripathi, “AI in Finance Institutions: Multiplying Output using SageMaker,” J. Comput. Sci. Technol. Stud., vol. 7, no. 5, pp. 94–101, 2025, doi: 10.32996/jcsts.2025.7.5.13.
Nwoke, “Harnessing predictive analytics, machine learning, and scenario modeling,” Int. J. Comput. Appl. Technol. Res., 2025, doi: 10.7753/IJCATR1404.1010.
Rane, Jayesh and Amol Chaudhari, Reshma and Rane, Nitin, Artificial Intelligence and Machine Learning for Supply Chain Resilience: Risk Assessment and Decision Making in Manufacturing Industry 4.0 and 5.0 (July 24, 2025). Available at SSRN: https://ssrn.com/abstract=5366932 or http://dx.doi.org/10.2139/ssrn.5366932
X. Han et al., “Symmetry-Aware Credit Risk Modeling,” Symmetry, vol. 17, no. 3, 2025.
DOI: 10.3390/sym17030341
O. Irekponor, “Designing resilient AI architectures for predictive energy finance systems,” Int. J. Res. Publ. Rev., vol. 6, no. 6, pp. 73–100, 2025.
N. A. Siddiqui, “Optimizing Business Decision-Making through AI-Enhanced BI Systems,” Strategic Data Manag. Innov., vol. 2, no. 1, pp. 202–223, 2025, doi: 10.71292/sdmi.v2i01.21.
Rane, Nitin and Paramesha, Mallikarjuna and Choudhary, Saurabh and Rane, Jayesh, Business Intelligence and Business Analytics With Artificial Intelligence and Machine Learning: Trends, Techniques, and Opportunities (May 17, 2024). Available at SSRN: https://ssrn.com/abstract=4831920 or http://dx.doi.org/10.2139/ssrn.4831920.
O. Famoti et al., “Data-Driven Risk Management in US Financial Institutions,” 2023. https://www.multiresearchjournal.com/admin/uploads/archives/archive-1739352974.pdf
A.Ajuwon et al., “AI-Powered Transformations in Financial Services,” Eng. Technol. J., vol. 10, no. 6, pp. 5397–5415, 2025, doi: 10.47191/etj/v10i06.12.
J. Rane, R. A. Chaudhari, and N. L. Rane, “Sustainable Supply Chain Resilience through AI,” Deep Science Publishing, 2025.ISBN:9789371856218, 9371856211
A.Ahmed et al., “AI-driven innovations in modern banking,” J. Manag. Sci. Res. Rev., vol. 4, no. 3, pp. 1145–1183, 2025.
Saiyed, “AI-Driven Innovations in Fintech,” Int. J. Elect. Comput. Eng. Res., vol. 5, no. 1, pp. 8–15, 2025.
Adekunle et al., “Integrating AI-driven risk assessment frameworks in financial operations,” Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., vol. 9, no. 6, pp. 445–464, 2023, doi: 10.32628/IJSRCSEIT.
A.Khaddam and A. Alzghoul, “AI-driven business intelligence for strategic energy and ESG management,” Int. J. Energy Econ. Policy, vol. 15, no. 4, p. 635, 2025, doi: 10.32479/ijeep.19820.
A.Ojo, “A Data-Driven Framework for Project Risk Monitoring Using Predictive Analytics,” J. Manag. Dev. Res., vol. 2, no. 2, pp. 125–136, 2025, doi: 10.69739/jmdr.v2i2.1171.
S. A. Mohammed, “Integrated Financial Ecosystems,” Indonesian J. Adv. Res. Technol., vol. 7, no. 7, 2025.
O. Olubusola et al., “Machine learning in financial forecasting: A U.S. review,” World J. Adv. Res. Rev., vol. 21, no. 2, pp. 1969–1984, 2024, doi: 10.30574/wjarr.2024.21.2.0444.
R. Paul, M. A. Rahman, and M. Nuruzzaman, “AI-Enabled Decision Support Systems for Infrastructure Project Management,” Rev. Appl. Sci. Technol., vol. 3, no. 4, pp. 29–47, 2024, doi: 10.63125/8d96m319.
Oko-Odion and A. Angela, “Risk management frameworks for financial institutions,” Int. J. Sci. Res. Arch., vol. 14, no. 1, pp. 1182–1204, 2025, doi: 10.30574/ijsra.2025.14.1.0155.
S. Uddin et al., “Hybrid reinforcement learning and knowledge graph framework for financial risk optimization,” Sci. Rep., vol. 15, no. 1, p. 29057, 2025, doi: 10.1038/s41598-025-14355-8.
A.S. Adepoju, “Transforming administrative functions through AI,” Int. J. Res. Publ. Rev., vol. 6, no. 1, pp. 4300–4316, 2025, doi: 10.55248/gengpi.6.0125.0622.
Hasan and M. O. Faruq, “AI-Augmented Risk Detection in Cybersecurity Compliance,” ASRC Procedia, vol. 1, no. 1, pp. 313–342, 2025, doi: 10.63125/49gs6175.
Batz et al., “Integrating machine learning into business and management,” Humanit. Soc. Sci. Commun., vol. 12, no. 1, pp. 1–20, 2025, doi: 10.1057/s41599-025-04361-6.
Y. S. Ahirrao et al., “AI-Powered Financial Strategy,” Emerg. Front. Libr. Amer. J. Eng. Technol., vol. 7, no. 9, pp. 126–151, 2025.
U. Das, “Scaling Agile with AI,” IJSAT, vol. 16, no. 2, 2025. https://doi.org/10.71097/IJSAT.v16.i2.5874
G. Luo, M. A. Arshad, and G. Luo, “Decision Trees for Strategic Choice,” Symmetry, vol. 17, no. 7, p. 976, 2025, doi: 10.3390/sym17070976.
S. S. Parimi, “Automated Risk Assessment in SAP Financial Modules through Machine Learning,” SSRN Electron. J., 2019, doi: 10.2139/ssrn.4934897.
A.Odunaike, “Integrating Real-Time Financial Data Streams…,” Int. J. Comput. Appl. Technol. Res., vol. 14, no. 8, pp. 1–16, 2025, doi: 10.7753/IJCATR1408.1001.
Mendeley Data, “Dataset: w9mzf4vswh (Version 2),” Mendeley Data, Accessed: Feb. 10, 2025. [Online]. Available: https://data.mendeley.com/datasets/w9mzf4vswh/2
U.S. General Services Administration, “Federal Procurement Data System (FPDS),” FPDS.gov, Accessed: Feb. 10, 2025. [Online]. Available: https://www.fpds.gov/
California State Government, “Open Fiscal Data Portal,” Open Fiscal California, Accessed: Feb. 10, 2025. [Online]. Available: https://open.fiscal.ca.gov/
Stanford University, “MCC: The Modeling Civil Courts Project,” Stanford Law School, Accessed: Feb. 10, 2025. [Online]. Available: https://mcc.law.stanford.edu/
Government Transparency Project, “Databases Overview,” GovTransparency.eu, Accessed: Feb. 10, 2025. [Online]. Available: https://www.govtransparency.eu/category/databases/