Main Article Content
Abstract
With the crisis of greenhouse gases resulting in global warming, radiative cooling can assuage the need to keep cool without any adverse footprints. Radiative cooling is a heat transfer phenomenon in which entities dissipate heat directly into deep space without any effort or requiring input energy. It has been a well-known worldwide phenomenon for nocturnal heat transfer to dissipate heat into deep space. In recent years, however, its potential for cooling during the day leads to be considered as a possible method to mitigate the energy shortage, and it also can benefit the entire world's environment. Radiative cooling materials have leaped with the rapid advancement of nanotechnology. In this review paper, radiative cooling is comprehensively represented with regard to the principle of radiative cooling, energy balance, optimization, and various applications. In the first section, the basic principle of heat transfer mechanisms, which engage simultaneously in radiative cooling surface (RCS), are considered and elaborated. Then various approaches were surveyed to improve the performance of radiative cooling surfaces to outline possible pathways of its development in terms of cooling performance and commercial application. And finally, the application of RCS is discussed to explain the benefits of employing them. This review also makes it possible to researchers to develop the RCS for further upgrade, and the prospect of this subject reviews the major features in summary for further future studies.
Keywords
Article Details
References
- Pérez-Lombard, L., Ortiz, J., Pout, C., 2008. A review of buildings’ energy consumption information. Energ. Buildings 40, 394–398.
- Zeyghami M, Goswami DY, Stefanakos E. A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling. Sol Energy Mater Sol Cells. 2018;178(178):115-128. doi:10.1016/j.solmat.2018.01.015
- Granqvist CG. Radiative heating and cooling with spectrally selective surfaces. Appl Opt. 1981;20(15):2606-2615. doi:10. 1364/ao.20.002606
- Catalanotti, S., Cuomo, V., Piro, G., Ruggi, D., Silvestrini, V., Troise, G., 1975. The radia- tive cooling of selective surfaces. Sol. Energy 17, 83–89.
- Harrison, A.W., Walto, M.R., 1978. Radiative cooling of TiO2 white paint. Sol. Energy 20, 185–188.
- Sun, X., Sun, Y., Zhou, Z., Alam, M.A., Bermel, P., 2017. Radiative sky cooling: fundamental physics, materials, structures, and applications. Nanophotonics 6, 997–1015.
- Suichi, T., Ishikawa, A., Hayashi, Y., & Tsuruta, K. (2018). Performance limit of daytime radiative cooling in warm humid environment. AIP Advances, 8(5), 055124.
- Zhao, B., Hu, M., Ao, X., Xuan, Q., Pei, G., 2020. Spectrally selective approaches for passive cooling of solar cells: a review. Appl. Energ. 262, 114548.
- Goldstein, E.A., Raman, A.P., Fan, S., 2017. Sub-ambient non-evaporative fluid cooling with the sky. Nat. Energy 2, 17143.
- Sohel Murshed, S.M., Nieto de Castro, C.A., 2017. A critical review of traditional and emerging techniques and fluids for electronics cooling. Renew. Sust. Energ. Rev. 78, 821–833.
- Zhao, D., Aili, A., Zhai, Y., Xu, S., Tan, G., Yin, X., Yang, R., 2019a. Radiative sky cooling: fundamental principles, materials, and applications. Appl. Phys. Rev. 6.2 (2019): 021306.
- Fixsen, D.J., 2009. The temperature of the cosmic microwave background. The Astrophys. J. 707, 916–920.
- Liu, B., Xue, C., Zhong, H., Guo, X., Wang, H., Li, H., Du, M., Huang, M., Wei, C., Song, G., Chang, B., Wang, Z., 2021. Multi-bioinspired self-cleaning energy-free cooling coatings. J. Mater. Chem. A 9, 24276.
- Zhong, H., Li, Y., Zhang, P., Gao, S., Liu, B., Wang, Y., Meng, T., Zhou, Y., Hou, H., Xue, C., Zhao, Y., Wang, Z., 2021a. Hierarchically hollow microfibers as a scalable and effective thermal insulating cooler for buildings. ACS Nano 15, 10076–10083.
- Yin, X., Yang, R., Tan, G., Fan, S., 2020. Terrestrial radiative cooling: using the cold universe as a renewable and sustainable energy source. Science 370, 786–791.
- Li, T., Zhai, Y., He, S., Gan, W., Hu, L., 2019. A radiative cooling structural material. Science 364, 760–763.
- Raman, A.P., Anoma, M.A., Zhu, L., Rephaeli, E., Fan, S., 2014. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544.
- Shi, Y., Li, W., Raman, A., Fan, S., 2017. Optimization of multilayer optical films with a memetic algorithm and mixed integer programming. ACS Photonics 5, 684–691.
- Ma, H., Yao, K., Dou, S., Xiao, M., Dai, M., Wang, L., Zhao, H., Zhao, J., Li, Y., Zhan, Y., 2020. Multilayered SiO2 /Si3 N4 photonic emitter to achieve high-performance all-day radiative cooling. Sol. Energ. Mat. Sol. C. 212, 110584.
- Dai, Y., Zhang, Z., Ma, C., 2020. Radiative cooling with multilayered periodic grating under sunlight. Opt. Commun. 475, 126231.
- Zhou, L., Song, H., Liang, J., Singer, M., Zhou, M., Stegenburgs, E., Zhang, N., Xu, C., Ng, T., Yu, Z., Ooi, B., Gan, Q., 2019. A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat. Sustain. 2, 718–724.
- Zhong, S., Yi, L., Zhang, J., Xu, T., Xu, L., Zhang, X., Zuo, T., Cai, Y., 2021b. Self-cleaning and spectrally selective coating on cotton fabric for passive daytime radiative cooling. Chem. Eng. J. 407, 127104.
- Lee, D., Go, M., Son, S., Kim, M., Badloe, T., Lee, H., Kim, J.K., Rho, J., 2021. Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide. Nano Energy 79, 105426.
- Son, S., Liu, Y., Chae, D., Lee, H., 2020. Cross-linked porous polymeric coating without a metal-reflective layer for sub-ambient radiative cooling. ACS Appl. Mater. Inter 12, 57832–57839.
- Wang, T., Wu, Y., Shi, L., Hu, X., Chen, M., Wu, L., 2021. A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 12, 365.
- Xiang, B., Zhang, R., Luo, Y., Zhang, S., Xu, L., Min, H., Tang, S., Meng, X., 2021. 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling. Nano Energy 81, 105600.
- Shi, N.N., Tsai, C.C., Camino, F., Bernard, G.D., Yu, N., Wehner, R., 2015. Keeping cool: enhanced optical reflection and radiative heat dissipation in saharan silver ants. Science 349, 298–301.
- Lu, Y., Chen, Z., Ai, L., Zhang, X., Zhang, J., Li, J., Wang, W., Tan, R., Dai, N., Song, W., 2017. A universal route to realize radiative cooling and light management in photovoltaic modules. Sol. RRL 1, 1700084.
- Zhai, Y., Ma, Y., David, S.N., Zhao, D., Lou, R., Tan, G., Yang, R., Yin, X., 2017. Scalable–manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066.
- Zou, C., Ren, G., Hossain, M.M., Nirantar, S., Withayachumnankul, W., Ahmed, T., Bhaskaran, M., Sriram, S., Gu, M., Fumeaux, C., 2017. Metal loaded dielectric resonator metasurfaces for radiative cooling. Adv. Opt. Mater. 5, 1700460.
- Xi, W., Liu, Y., Zhao, W., Hu, R., & Luo, X. (2021). Colored radiative cooling: How to balance color display and radiative cooling performance. International Journal of Thermal Sciences, 170, 107172.
- Mandal, J., Fu, Y., Overvig, A. C., Jia, M., Sun, K., Shi, N. N., ... & Yang, Y. (2018). Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science, 362(6412), 315-319.
- Li, X., Peoples, J., Yao, P., & Ruan, X. (2020). Remarkable Daytime Sub-ambient Radiative Cooling in BaSO4 Nanoparticle Films and Paints. arXiv preprint arXiv:2011.01161.
- Li, X., Peoples, J., Yao, P., & Ruan, X. (2021). Ultrawhite BaSO4 paints and films for remarkable daytime subambient radiative cooling. ACS Applied Materials & Interfaces, 13(18), 21733-21739.
- Liu, J., Zhang, J., Zhang, D., Jiao, S., Xing, J., Tang, H., ... & Zuo, J. (2020). Sub-ambient radiative cooling with wind cover. Renewable and Sustainable Energy Reviews, 130, 109935.
- Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E., & Fan, S. (2014). Passive radiative cooling below ambient air temperature under direct sunlight. Nature, 515(7528), 540-544.
- Nilsson, T. M. J., Vargas, W. E., Niklasson, G. A., & Granqvist, C. G. (1994). Condensation of water by radiative cooling. Renewable Energy, 5(1-4), 310-317.
- Haechler
- Mousavi, S. P., Jalali, A., & Rahimian, M. H. (2022). Numerical simulation of indirect freezing desalination using lattice Boltzmann method. Physics of Fluids, 34(7), 073322.
- Mohamadkhani, M., Kowsary, F., & Ghasemi, M. (2023). Techno-economic assessment of fixed solar panels and sun-tracking technology in solar farms in the districts of Tehran and Qazvin in Iran. Future Energy, 2(3), 29-37.
- Safi TTST, Munday JJN. Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments. Opt Express 2015;23:A1120–8.
- Sun X, Silverman TJ, Zhou Z, Khan MR, Bermel P, Alam MA. Optics-based approach to thermal management of photovolta- ics: selective-spectral and radiative cooling. IEEE J Photovolta- ics 2017;7:566–74.
- Zhu, L., Raman, A., Wang, K. X., Abou Anoma, M., & Fan, S. (2014). Radiative cooling of solar cells. Optica, 1(1), 32-38.
- Zhu, L., Raman, A., Wang, K. X., Abou Anoma, M., & Fan, S. (2014). Radiative cooling of solar cells. Optica, 1(1), 32-38.
- Ahmed, S., Li, Z., Javed, M. S., & Ma, T. (2021). A review on the integration of radiative cooling and solar energy harvesting. Materials Today Energy, 21, 100776.
- Zhao, B., Wang, C., Hu, M., Ao, X., Liu, J., Xuan, Q., & Pei, G. (2022). Light and thermal management of the semi-transparent radiative cooling glass for buildings. Energy, 238, 121761.
- Zhao, X., Aili, A., Zhao, D., Xu, D., Yin, X., & Yang, R. (2022). Dynamic glazing with switchable solar reflectance for radiative cooling and solar heating. Cell Reports Physical Science, 3(4), 100853.
- Zhao, X., Aili, A., Zhao, D., Xu, D., Yin, X., & Yang, R. (2022). Dynamic glazing with switchable solar reflectance for radiative cooling and solar heating. Cell Reports Physical Science, 3(4), 100853.
- Erell, E., & Etzion, Y. (2000). Radiative cooling of buildings with flat-plate solar collectors. Building and environment, 35(4), 297-305.
- Li, X., Sun, B., Sui, C., Nandi, A., Fang, H., Peng, Y., ... & Hsu, P. C. (2020). Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings. Nature communications, 11(1), 1-9.
- Zhao, B., Hu, M., Ao, X., & Pei, G. (2017). Conceptual development of a building-integrated photovoltaic–radiative cooling system and preliminary performance analysis in Eastern China. Applied energy, 205, 626-634.
- Zhao, B., Hu, M., Ao, X., & Pei, G. (2017). Conceptual development of a building-integrated photovoltaic–radiative cooling system and preliminary performance analysis in Eastern China. Applied energy, 205, 626-634.
- Lv, Y., Huang, A., Yang, J., Xu, J., & Yang, R. (2021). Improving cabin thermal environment of parked vehicles under direct sunlight using a daytime radiative cooling cover. Applied Thermal Engineering, 190, 116776.
- Lei, M. Q., Hu, Y. F., Song, Y. N., Li, Y., Deng, Y., Liu, K., ... & Li, Z. M. (2021). Transparent radiative cooling films containing poly (methylmethacrylate), silica, and silver. Optical Materials, 122, 111651.
- Office of Energy Saver. Heating and Cooling US Department of Energy www.energy.gov/heating-cooling
- Rödel, H., Schenk, A., Herzberg, C. & Krzywinski, S. Links between design, pattern development and fabric behaviours for clothes and technical textiles. Int. J. Cloth. Sci. Tech. 13, 217–227 (2001).
- Cho, S. C. et al. Surface modification of polyimide films, filter papers, and cotton clothes by HMDSO/toluene plasma at low pressure and its wettability. Curr. Appl. Phys. 9, 1223–1226 (2009).
- Parvari, R. A. et al. The effect of fabric type of common Iranian working clothes on the induced cardiac and physiological strain under heat stress. Arch. Environ. Occup. Health 70, 272–278 (2015).
- Hsu, P. C. et al. Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016).
- Peng, Y. et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1, 105–112 (2018).
- Zhang, X. et al. Dynamic gating of infrared radiation in a textile. Science 363, 619–623 (2019).
- Cai, L. et al. Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 30, 1802152 (2018).
- Hsu, P. C. et al. A dual-mode textile for human body radiative heating and cooling. Sci. Adv. 3, e1700895 (2017).
- Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).
- Zhai, Y. et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017).
- Li, T. et al. A radiative cooling structural material. Science 364, 760–763 (2019).
- Mandal, J. et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315–319 (2018).
- Yang, Y. & Li, S. Silk fabric non-formaldehyde crease-resistant finishing using citric acid. J. Text. Inst. 84, 638–644 (1993).
- Gong, R. H. & Mukhopadhyay, S. K. Fabric objective measurement: a comparative study of fabric characteristics. J. Text. Inst. 84, 192–198 (1993).
- Huang, F., Wei, Q., Liu, Y., Gao, W. & Huang, Y. Surface functionalization of silk fabric by PTFE sputter coating. J. Mater. Sci. 42, 8025–8028 (2007).
- Cai, Z., Jiang, G. & Yang, S. Chemical finishing of silk fabric. Color. Technol. 117, 161–165 (2001).
- Shi, N. et al. Keeping cool: enhanced optical reflection and heat dissipation in silver ants. Science 349, 298–301 (2015).
- Jin, H. & Kaplan, D. L. Mechanism of silk processing in insects and spiders. Nature 424, 1057–1061 (2003).
- Choi, S. et al. Anderson light localization in biological nanostructures of native silk. Nat. Commun. 9, 452 (2018).
- Shi, N. et al. Nanostructured fibers as a versatile photonic platform: radiative cooling and waveguiding through transverse Anderson localization. Light Sci. Appl. 7, 37 (2018).
- Zhu, B., Li, W., Zhang, Q., Li, D., Liu, X., Wang, Y., ... & Zhu, J. (2021). Subambient daytime radiative cooling textile based on nanoprocessed silk. Nature Nanotechnology, 16(12), 1342-1348.
- Ma, Z., Zhao, D., Wang, F., & Yang, R. (2022). A novel thermal comfort and energy saving evaluation model for radiative cooling and heating textiles. Energy and Buildings, 258, 111842.
References
Pérez-Lombard, L., Ortiz, J., Pout, C., 2008. A review of buildings’ energy consumption information. Energ. Buildings 40, 394–398.
Zeyghami M, Goswami DY, Stefanakos E. A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling. Sol Energy Mater Sol Cells. 2018;178(178):115-128. doi:10.1016/j.solmat.2018.01.015
Granqvist CG. Radiative heating and cooling with spectrally selective surfaces. Appl Opt. 1981;20(15):2606-2615. doi:10. 1364/ao.20.002606
Catalanotti, S., Cuomo, V., Piro, G., Ruggi, D., Silvestrini, V., Troise, G., 1975. The radia- tive cooling of selective surfaces. Sol. Energy 17, 83–89.
Harrison, A.W., Walto, M.R., 1978. Radiative cooling of TiO2 white paint. Sol. Energy 20, 185–188.
Sun, X., Sun, Y., Zhou, Z., Alam, M.A., Bermel, P., 2017. Radiative sky cooling: fundamental physics, materials, structures, and applications. Nanophotonics 6, 997–1015.
Suichi, T., Ishikawa, A., Hayashi, Y., & Tsuruta, K. (2018). Performance limit of daytime radiative cooling in warm humid environment. AIP Advances, 8(5), 055124.
Zhao, B., Hu, M., Ao, X., Xuan, Q., Pei, G., 2020. Spectrally selective approaches for passive cooling of solar cells: a review. Appl. Energ. 262, 114548.
Goldstein, E.A., Raman, A.P., Fan, S., 2017. Sub-ambient non-evaporative fluid cooling with the sky. Nat. Energy 2, 17143.
Sohel Murshed, S.M., Nieto de Castro, C.A., 2017. A critical review of traditional and emerging techniques and fluids for electronics cooling. Renew. Sust. Energ. Rev. 78, 821–833.
Zhao, D., Aili, A., Zhai, Y., Xu, S., Tan, G., Yin, X., Yang, R., 2019a. Radiative sky cooling: fundamental principles, materials, and applications. Appl. Phys. Rev. 6.2 (2019): 021306.
Fixsen, D.J., 2009. The temperature of the cosmic microwave background. The Astrophys. J. 707, 916–920.
Liu, B., Xue, C., Zhong, H., Guo, X., Wang, H., Li, H., Du, M., Huang, M., Wei, C., Song, G., Chang, B., Wang, Z., 2021. Multi-bioinspired self-cleaning energy-free cooling coatings. J. Mater. Chem. A 9, 24276.
Zhong, H., Li, Y., Zhang, P., Gao, S., Liu, B., Wang, Y., Meng, T., Zhou, Y., Hou, H., Xue, C., Zhao, Y., Wang, Z., 2021a. Hierarchically hollow microfibers as a scalable and effective thermal insulating cooler for buildings. ACS Nano 15, 10076–10083.
Yin, X., Yang, R., Tan, G., Fan, S., 2020. Terrestrial radiative cooling: using the cold universe as a renewable and sustainable energy source. Science 370, 786–791.
Li, T., Zhai, Y., He, S., Gan, W., Hu, L., 2019. A radiative cooling structural material. Science 364, 760–763.
Raman, A.P., Anoma, M.A., Zhu, L., Rephaeli, E., Fan, S., 2014. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544.
Shi, Y., Li, W., Raman, A., Fan, S., 2017. Optimization of multilayer optical films with a memetic algorithm and mixed integer programming. ACS Photonics 5, 684–691.
Ma, H., Yao, K., Dou, S., Xiao, M., Dai, M., Wang, L., Zhao, H., Zhao, J., Li, Y., Zhan, Y., 2020. Multilayered SiO2 /Si3 N4 photonic emitter to achieve high-performance all-day radiative cooling. Sol. Energ. Mat. Sol. C. 212, 110584.
Dai, Y., Zhang, Z., Ma, C., 2020. Radiative cooling with multilayered periodic grating under sunlight. Opt. Commun. 475, 126231.
Zhou, L., Song, H., Liang, J., Singer, M., Zhou, M., Stegenburgs, E., Zhang, N., Xu, C., Ng, T., Yu, Z., Ooi, B., Gan, Q., 2019. A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat. Sustain. 2, 718–724.
Zhong, S., Yi, L., Zhang, J., Xu, T., Xu, L., Zhang, X., Zuo, T., Cai, Y., 2021b. Self-cleaning and spectrally selective coating on cotton fabric for passive daytime radiative cooling. Chem. Eng. J. 407, 127104.
Lee, D., Go, M., Son, S., Kim, M., Badloe, T., Lee, H., Kim, J.K., Rho, J., 2021. Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide. Nano Energy 79, 105426.
Son, S., Liu, Y., Chae, D., Lee, H., 2020. Cross-linked porous polymeric coating without a metal-reflective layer for sub-ambient radiative cooling. ACS Appl. Mater. Inter 12, 57832–57839.
Wang, T., Wu, Y., Shi, L., Hu, X., Chen, M., Wu, L., 2021. A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 12, 365.
Xiang, B., Zhang, R., Luo, Y., Zhang, S., Xu, L., Min, H., Tang, S., Meng, X., 2021. 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling. Nano Energy 81, 105600.
Shi, N.N., Tsai, C.C., Camino, F., Bernard, G.D., Yu, N., Wehner, R., 2015. Keeping cool: enhanced optical reflection and radiative heat dissipation in saharan silver ants. Science 349, 298–301.
Lu, Y., Chen, Z., Ai, L., Zhang, X., Zhang, J., Li, J., Wang, W., Tan, R., Dai, N., Song, W., 2017. A universal route to realize radiative cooling and light management in photovoltaic modules. Sol. RRL 1, 1700084.
Zhai, Y., Ma, Y., David, S.N., Zhao, D., Lou, R., Tan, G., Yang, R., Yin, X., 2017. Scalable–manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066.
Zou, C., Ren, G., Hossain, M.M., Nirantar, S., Withayachumnankul, W., Ahmed, T., Bhaskaran, M., Sriram, S., Gu, M., Fumeaux, C., 2017. Metal loaded dielectric resonator metasurfaces for radiative cooling. Adv. Opt. Mater. 5, 1700460.
Xi, W., Liu, Y., Zhao, W., Hu, R., & Luo, X. (2021). Colored radiative cooling: How to balance color display and radiative cooling performance. International Journal of Thermal Sciences, 170, 107172.
Mandal, J., Fu, Y., Overvig, A. C., Jia, M., Sun, K., Shi, N. N., ... & Yang, Y. (2018). Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science, 362(6412), 315-319.
Li, X., Peoples, J., Yao, P., & Ruan, X. (2020). Remarkable Daytime Sub-ambient Radiative Cooling in BaSO4 Nanoparticle Films and Paints. arXiv preprint arXiv:2011.01161.
Li, X., Peoples, J., Yao, P., & Ruan, X. (2021). Ultrawhite BaSO4 paints and films for remarkable daytime subambient radiative cooling. ACS Applied Materials & Interfaces, 13(18), 21733-21739.
Liu, J., Zhang, J., Zhang, D., Jiao, S., Xing, J., Tang, H., ... & Zuo, J. (2020). Sub-ambient radiative cooling with wind cover. Renewable and Sustainable Energy Reviews, 130, 109935.
Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E., & Fan, S. (2014). Passive radiative cooling below ambient air temperature under direct sunlight. Nature, 515(7528), 540-544.
Nilsson, T. M. J., Vargas, W. E., Niklasson, G. A., & Granqvist, C. G. (1994). Condensation of water by radiative cooling. Renewable Energy, 5(1-4), 310-317.
Haechler
Mousavi, S. P., Jalali, A., & Rahimian, M. H. (2022). Numerical simulation of indirect freezing desalination using lattice Boltzmann method. Physics of Fluids, 34(7), 073322.
Mohamadkhani, M., Kowsary, F., & Ghasemi, M. (2023). Techno-economic assessment of fixed solar panels and sun-tracking technology in solar farms in the districts of Tehran and Qazvin in Iran. Future Energy, 2(3), 29-37.
Safi TTST, Munday JJN. Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments. Opt Express 2015;23:A1120–8.
Sun X, Silverman TJ, Zhou Z, Khan MR, Bermel P, Alam MA. Optics-based approach to thermal management of photovolta- ics: selective-spectral and radiative cooling. IEEE J Photovolta- ics 2017;7:566–74.
Zhu, L., Raman, A., Wang, K. X., Abou Anoma, M., & Fan, S. (2014). Radiative cooling of solar cells. Optica, 1(1), 32-38.
Zhu, L., Raman, A., Wang, K. X., Abou Anoma, M., & Fan, S. (2014). Radiative cooling of solar cells. Optica, 1(1), 32-38.
Ahmed, S., Li, Z., Javed, M. S., & Ma, T. (2021). A review on the integration of radiative cooling and solar energy harvesting. Materials Today Energy, 21, 100776.
Zhao, B., Wang, C., Hu, M., Ao, X., Liu, J., Xuan, Q., & Pei, G. (2022). Light and thermal management of the semi-transparent radiative cooling glass for buildings. Energy, 238, 121761.
Zhao, X., Aili, A., Zhao, D., Xu, D., Yin, X., & Yang, R. (2022). Dynamic glazing with switchable solar reflectance for radiative cooling and solar heating. Cell Reports Physical Science, 3(4), 100853.
Zhao, X., Aili, A., Zhao, D., Xu, D., Yin, X., & Yang, R. (2022). Dynamic glazing with switchable solar reflectance for radiative cooling and solar heating. Cell Reports Physical Science, 3(4), 100853.
Erell, E., & Etzion, Y. (2000). Radiative cooling of buildings with flat-plate solar collectors. Building and environment, 35(4), 297-305.
Li, X., Sun, B., Sui, C., Nandi, A., Fang, H., Peng, Y., ... & Hsu, P. C. (2020). Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings. Nature communications, 11(1), 1-9.
Zhao, B., Hu, M., Ao, X., & Pei, G. (2017). Conceptual development of a building-integrated photovoltaic–radiative cooling system and preliminary performance analysis in Eastern China. Applied energy, 205, 626-634.
Zhao, B., Hu, M., Ao, X., & Pei, G. (2017). Conceptual development of a building-integrated photovoltaic–radiative cooling system and preliminary performance analysis in Eastern China. Applied energy, 205, 626-634.
Lv, Y., Huang, A., Yang, J., Xu, J., & Yang, R. (2021). Improving cabin thermal environment of parked vehicles under direct sunlight using a daytime radiative cooling cover. Applied Thermal Engineering, 190, 116776.
Lei, M. Q., Hu, Y. F., Song, Y. N., Li, Y., Deng, Y., Liu, K., ... & Li, Z. M. (2021). Transparent radiative cooling films containing poly (methylmethacrylate), silica, and silver. Optical Materials, 122, 111651.
Office of Energy Saver. Heating and Cooling US Department of Energy www.energy.gov/heating-cooling
Rödel, H., Schenk, A., Herzberg, C. & Krzywinski, S. Links between design, pattern development and fabric behaviours for clothes and technical textiles. Int. J. Cloth. Sci. Tech. 13, 217–227 (2001).
Cho, S. C. et al. Surface modification of polyimide films, filter papers, and cotton clothes by HMDSO/toluene plasma at low pressure and its wettability. Curr. Appl. Phys. 9, 1223–1226 (2009).
Parvari, R. A. et al. The effect of fabric type of common Iranian working clothes on the induced cardiac and physiological strain under heat stress. Arch. Environ. Occup. Health 70, 272–278 (2015).
Hsu, P. C. et al. Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016).
Peng, Y. et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1, 105–112 (2018).
Zhang, X. et al. Dynamic gating of infrared radiation in a textile. Science 363, 619–623 (2019).
Cai, L. et al. Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 30, 1802152 (2018).
Hsu, P. C. et al. A dual-mode textile for human body radiative heating and cooling. Sci. Adv. 3, e1700895 (2017).
Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).
Zhai, Y. et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017).
Li, T. et al. A radiative cooling structural material. Science 364, 760–763 (2019).
Mandal, J. et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315–319 (2018).
Yang, Y. & Li, S. Silk fabric non-formaldehyde crease-resistant finishing using citric acid. J. Text. Inst. 84, 638–644 (1993).
Gong, R. H. & Mukhopadhyay, S. K. Fabric objective measurement: a comparative study of fabric characteristics. J. Text. Inst. 84, 192–198 (1993).
Huang, F., Wei, Q., Liu, Y., Gao, W. & Huang, Y. Surface functionalization of silk fabric by PTFE sputter coating. J. Mater. Sci. 42, 8025–8028 (2007).
Cai, Z., Jiang, G. & Yang, S. Chemical finishing of silk fabric. Color. Technol. 117, 161–165 (2001).
Shi, N. et al. Keeping cool: enhanced optical reflection and heat dissipation in silver ants. Science 349, 298–301 (2015).
Jin, H. & Kaplan, D. L. Mechanism of silk processing in insects and spiders. Nature 424, 1057–1061 (2003).
Choi, S. et al. Anderson light localization in biological nanostructures of native silk. Nat. Commun. 9, 452 (2018).
Shi, N. et al. Nanostructured fibers as a versatile photonic platform: radiative cooling and waveguiding through transverse Anderson localization. Light Sci. Appl. 7, 37 (2018).
Zhu, B., Li, W., Zhang, Q., Li, D., Liu, X., Wang, Y., ... & Zhu, J. (2021). Subambient daytime radiative cooling textile based on nanoprocessed silk. Nature Nanotechnology, 16(12), 1342-1348.
Ma, Z., Zhao, D., Wang, F., & Yang, R. (2022). A novel thermal comfort and energy saving evaluation model for radiative cooling and heating textiles. Energy and Buildings, 258, 111842.