Main Article Content
Abstract
The portable electronic devices in everyday life have been getting increasingly compact day by day, and with the advancement in wireless technology, they are expected to facilitate multitasking. In this context, efficient heat dissipation to maintain consistent thermal performance has become quite a challenge. Phase change materials (PCMs) have emerged as a viable option to eliminate problems regarding the thermal management of compact electronics. This review looks into the different types of PCMs investigated by researchers so far, especially in the case of cooling compact electronic devices. It also discusses the parameters critical to its efficiency and implementation, encapsulation, etc. The merit of internal fins, nanomaterials, and metal foams as thermal conductivity enhancers along with shortcomings in the current literature have also been noted in this review.
Keywords
Article Details
References
- X.-Q. Wang, A. S. Mujumdar, and C. Yap, “Effect of orientation for phase change material (PCM)-based heat sinks for transient thermal management of electric components,” International Communications in Heat and Mass Transfer, vol. 34, no. 7, pp. 801–808, Aug. 2007, doi: 10.1016/j.icheatmasstransfer.2007.03.008.
- G. Setoh, F. L. Tan, and S. C. Fok, “Experimental studies on the use of a phase change material for cooling mobile phones,” International Communications in Heat and Mass Transfer, vol. 37, no. 9, pp. 1403–1410, Nov. 2010, doi: 10.1016/j.icheatmasstransfer.2010.07.013.
- W. G. Alshaer, S. A. Nada, M. A. Rady, C. le Bot, and E. Palomo Del Barrio, “Numerical investigations of using carbon foam/PCM/Nano carbon tubes composites in thermal management of electronic equipment,” Energy Conversion and Management, vol. 89, pp. 873–884, Jan. 2015, doi: 10.1016/j.enconman.2014.10.045.
- M. Emam, S. Ookawara, and M. Ahmed, “Thermal management of electronic devices and concentrator photovoltaic systems using phase change material heat sinks: Experimental investigations,” Renewable Energy, vol. 141, pp. 322–339, Oct. 2019, doi: 10.1016/j.renene.2019.03.151.
- A. L. Moore and L. Shi, “Emerging challenges and materials for thermal management of electronics,” Materials Today, vol. 17, no. 4, pp. 163–174, May 2014, doi: 10.1016/j.mattod.2014.04.003.
- G. C. Chou, “The Avionics Integrity Program,” Oct. 1988. doi: 10.4271/881351.
- E. M. Alawadhi and C. H. Amon, “Performance analysis of an enhanced PCM thermal control unit,” in ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069), pp. 283–289. doi: 10.1109/ITHERM.2000.866837.
- S. F. Hosseinizadeh, F. L. Tan, and S. M. Moosania, “Experimental and numerical studies on performance of PCM-based heat sink with different configurations of internal fins,” Applied Thermal Engineering, vol. 31, no. 17–18, pp. 3827–3838, Dec. 2011, doi: 10.1016/j.applthermaleng.2011.07.031.
- S. Arora, “Selection of thermal management system for modular battery packs of electric vehicles: A review of existing and emerging technologies,” Journal of Power Sources, vol. 400, pp. 621–640, Oct. 2018, doi: 10.1016/j.jpowsour.2018.08.020.
- T. Ahmed, M. Bhouri, D. Groulx, and M. A. White, “Passive thermal management of tablet PCs using phase change materials: Continuous operation,” International Journal of Thermal Sciences, vol. 134, pp. 101–115, Dec. 2018, doi: 10.1016/j.ijthermalsci.2018.08.010.
- H. So and A. P. Pisano, “Micromachined passive phase-change cooler for thermal management of chip-level electronics,” International Journal of Heat and Mass Transfer, vol. 89, pp. 1164–1171, Oct. 2015, doi: 10.1016/j.ijheatmasstransfer.2015.04.097.
- R. Kandasamy, X.-Q. Wang, and A. S. Mujumdar, “Transient cooling of electronics using phase change material (PCM)-based heat sinks,” Applied Thermal Engineering, vol. 28, no. 8–9, pp. 1047–1057, Jun. 2008, doi: 10.1016/j.applthermaleng.2007.06.010.
- R. Kalbasi and M. R. Salimpour, “Constructal design of phase change material enclosures used for cooling electronic devices,” Applied Thermal Engineering, vol. 84, pp. 339–349, Jun. 2015, doi: 10.1016/j.applthermaleng.2015.03.031.
- F. L. Tan and C. P. Tso, “Cooling of mobile electronic devices using phase change materials,” Applied Thermal Engineering, vol. 24, no. 2–3, pp. 159–169, Feb. 2004, doi: 10.1016/j.applthermaleng.2003.09.005.
- P. GRODZKA, “Thermal control of spacecraft by use of solid-liquid phase-change materials,” Jan. 1970. doi: 10.2514/6.1970-12.
- A. Jamekhorshid, S. M. Sadrameli, and M. Farid, “A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium,” Renewable and Sustainable Energy Reviews, vol. 31, pp. 531–542, Mar. 2014, doi: 10.1016/j.rser.2013.12.033.
- F. Salaün, E. Devaux, S. Bourbigot, and P. Rumeau, “Influence of process parameters on microcapsules loaded with n-hexadecane prepared by in situ polymerization,” Chemical Engineering Journal, vol. 155, no. 1–2, pp. 457–465, Dec. 2009, doi: 10.1016/j.cej.2009.07.018.
- D. Zhou, C. Y. Zhao, and Y. Tian, “Review on thermal energy storage with phase change materials (PCMs) in building applications,” Applied Energy, vol. 92, pp. 593–605, Apr. 2012, doi: 10.1016/j.apenergy.2011.08.025.
- M. M. Farid, A. M. Khudhair, S. A. K. Razack, and S. Al-Hallaj, “A review on phase change energy storage: materials and applications,” Energy Conversion and Management, vol. 45, no. 9–10, pp. 1597–1615, Jun. 2004, doi: 10.1016/j.enconman.2003.09.015.
- M. M. Kenisarin and K. M. Kenisarina, “Form-stable phase change materials for thermal energy storage,”Renewable and Sustainable Energy Reviews, vol. 16, no. 4, pp. 1999–2040, May 2012, doi: 10.1016/j.rser.2012.01.015.
- G. Fang, H. Li, F. Yang, X. Liu, and S. Wu, “Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage,” Chemical Engineering Journal, vol. 153, no. 1–3, pp. 217–221, Nov. 2009, doi: 10.1016/j.cej.2009.06.019.
- T. Khadiran, M. Z. Hussein, Z. Zainal, and R. Rusli, “Encapsulation techniques for organic phase change materials as thermal energy storage medium: A review,” Solar Energy Materials and Solar Cells, vol. 143, pp. 78–98, Dec. 2015, doi: 10.1016/j.solmat.2015.06.039.
- Y. Zhang et al., “Hydrocolloids: Nova materials assisting encapsulation of volatile phase change materials for cryogenic energy transport and storage,” Chemical Engineering Journal, vol. 382, p. 123028, Feb. 2020, doi: 10.1016/j.cej.2019.123028.
- S. Gharbi, S. Harmand, and S. ben Jabrallah, “Experimental comparison between different configurations of PCM based heat sinks for cooling electronic components,” Applied Thermal Engineering, vol. 87, pp. 454–462, Aug. 2015, doi: 10.1016/j.applthermaleng.2015.05.024.
- R. Baby and C. Balaji, “Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling,” International Journal of Heat and Mass Transfer, vol. 55, no. 5–6, pp. 1642–1649, Feb. 2012, doi: 10.1016/j.ijheatmasstransfer.2011.11.020.
- A. Abhat, “Short term thermal energy storage,” Revue de Physique Appliquée, vol. 15, no. 3, pp. 477–501, 1980, doi: 10.1051/rphysap:01980001503047700.
- S. M. Sohel Murshed and C. A. Nieto de Castro, “A critical review of traditional and emerging techniques and fluids for electronics cooling,” Renewable and Sustainable Energy Reviews, vol. 78, pp. 821–833, Oct. 2017, doi: 10.1016/j.rser.2017.04.112.
- H. Ye, Z. Wang, and L. Wang, “Effects of PCM on power consumption and temperature control performance of a thermal control system subject to periodic ambient conditions,” Applied Energy, vol. 190, pp. 213–221, Mar. 2017, doi: 10.1016/j.apenergy.2016.12.123.
- B. Eanest Jebasingh and A. Valan Arasu, “A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications,” Energy Storage Materials, vol. 24, pp. 52–74, Jan. 2020, doi: 10.1016/j.ensm.2019.07.031.
- P. J. Shamberger and N. M. Bruno, “Review of metallic phase change materials for high heat flux transient thermal management applications,” Applied Energy, vol. 258, p. 113955, Jan. 2020, doi: 10.1016/j.apenergy.2019.113955.
- M. M. Umair, Y. Zhang, K. Iqbal, S. Zhang, and B. Tang, “Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review,” Applied Energy, vol. 235, pp. 846–873, Feb. 2019, doi: 10.1016/j.apenergy.2018.11.017.
- C. S. Heu et al., “Layer-by-layer assembled phase change composite with paraffin for heat spreader with enhanced cooling capacity,” Energy Conversion and Management, vol. 204, p. 112287, Jan. 2020, doi: 10.1016/j.enconman.2019.112287.
- S. K. Sahoo, P. Rath, and M. K. Das, “Numerical study of phase change material based orthotropic heat sink for thermal management of electronics components,” International Journal of Heat and Mass Transfer, vol. 103, pp. 855–867, Dec. 2016, doi: 10.1016/j.ijheatmasstransfer.2016.07.063.
- G. A. Lane and H. E. Rossow, “Encapsulation of heat of fusion storage materials,” in 2nd southeastern conference on application of solar energy, Apr. 1976, pp. 442–450.
- G. A. Lane, “Low temperature heat storage with phase change materials,” International Journal of Ambient Energy, vol. 1, no. 3, pp. 155–168, Jul. 1980, doi: 10.1080/01430750.1980.9675731.
- Q. Xu, H. Liu, X. Wang, and D. Wu, “Smart design and construction of nanoflake-like MnO2/SiO2 hierarchical microcapsules containing phase change material for in-situ thermal management of supercapacitors,” Energy Conversion and Management, vol. 164, pp. 311–328, May 2018, doi: 10.1016/j.enconman.2018.03.006.
- Y. Zhu et al., “Nanoencapsulated phase change materials with polymer-SiO2 hybrid shell materials: Compositions, morphologies, and properties,” Energy Conversion and Management, vol. 164, pp. 83–92, May 2018, doi: 10.1016/j.enconman.2018.02.075.
- H. Peng et al., “n-Alkanes Phase Change Materials and Their Microencapsulation for Thermal Energy Storage: A Critical Review,” Energy & Fuels, vol. 32, no. 7, pp. 7262–7293, Jul. 2018, doi: 10.1021/acs.energyfuels.8b01347.
- Y. Chevalier and M.-A. Bolzinger, “Emulsions stabilized with solid nanoparticles: Pickering emulsions,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 439, pp. 23–34, Dec. 2013, doi: 10.1016/j.colsurfa.2013.02.054.
- D. J. French, P. Taylor, J. Fowler, and P. S. Clegg, “Making and breaking bridges in a Pickering emulsion,” Journal of Colloid and Interface Science, vol. 441, pp. 30–38, Mar. 2015, doi: 10.1016/j.jcis.2014.11.032.
- F. Jiang, X. Wang, and D. Wu, “Design and synthesis of magnetic microcapsules based on n-eicosane core and Fe3O4/SiO2 hybrid shell for dual-functional phase change materials,” Applied Energy, vol. 134, pp. 456–468, Dec. 2014, doi: 10.1016/j.apenergy.2014.08.061.
- H. Wang, L. Zhao, G. Song, G. Tang, and X. Shi, “Organic-inorganic hybrid shell microencapsulated phase change materials prepared, doi: 10.1016/j.solmat.2017.09.015.
- J. Zhao et al., “Microencapsulated phase change materials with TiO 2 -doped PMMA shell for thermal energy storage and UV-shielding,” Solar Energy Materials and Solar Cells, vol. 168, pp. 62–68, Aug. 2017, doi: 10.1016/j.solmat.2017.04.014.
- N. Sun and Z. Xiao, “Synthesis and Performances of Phase Change Materials Microcapsules with a Polymer/BN/TiO2 Hybrid Shell for Thermal Energy Storage,” Energy & Fuels, vol. 31, no. 9, pp. 10186–10195, Sep. 2017, doi: 10.1021/acs.energyfuels.7b01271.
- H. Wang, L. Zhao, L. Chen, G. Song, and G. Tang, “Facile and low energy consumption synthesis of microencapsulated phase change materials with hybrid shell for thermal energy storage,” Journal of Physics and Chemistry of Solids, vol. 111, pp. 207–213, Dec. 2017, doi: 10.1016/j.jpcs.2017.08.002.
- Y. Zhang, X. Zheng, H. Wang, and Q. Du, “Encapsulated phase change materials stabilized by modified graphene oxide,” Journal of Materials Chemistry A, vol. 2, no. 15, p. 5304, 2014, doi: 10.1039/c3ta15242a.
- X. Zhu et al., “Stable microencapsulated phase change materials with ultrahigh payload for efficient cooling of mobile electronic devices,” Energy Conversion and Management, vol. 223, p. 113478, Nov. 2020, doi: 10.1016/j.enconman.2020.113478.
- Y. Wang et al., “Lignin assisted Pickering emulsion polymerization to microencapsulate 1-tetradecanol for thermal management,” International Journal of Biological Macromolecules, vol. 146, pp. 1–8, Mar. 2020, doi: 10.1016/j.ijbiomac.2019.12.175.
- B. Zhang et al., “Microencapsulation of Phase Change Materials with Polystyrene/Cellulose Nanocrystal Hybrid Shell via Pickering Emulsion Polymerization,” ACS Sustainable Chemistry & Engineering, vol. 7, no. 21, pp. 17756–17767, Nov. 2019, doi: 10.1021/acssuschemeng.9b04134.
- L. Bai et al., “Self-Assembled Networks of Short and Long Chitin Nanoparticles for Oil/Water Interfacial Superstabilization,” ACS Sustainable Chemistry & Engineering, vol. 7, no. 7, pp. 6497–6511, Apr. 2019, doi: 10.1021/acssuschemeng.8b04023.
- Y. Xiao et al., “In Vitro Digestion of Oil-in-Water Emulsions Stabilized by Regenerated Chitin,” Journal of Agricultural and Food Chemistry, vol. 66, no. 46, pp. 12344–12352, Nov. 2018, doi: 10.1021/acs.jafc.8b03873.
- Y. Zhang et al., “Stabilizing oil-in-water emulsions with regenerated chitin nanofibers,” Food Chemistry, vol. 183, pp. 115–121, Sep. 2015, doi: 10.1016/j.foodchem.2015.03.030.
- Y. Tomizawa, K. Sasaki, A. Kuroda, R. Takeda, and Y. Kaito, “Experimental and numerical study on phase change material (PCM) for thermal management of mobile devices,” Applied Thermal Engineering, vol. 98, pp. 320–329, Apr. 2016, doi: 10.1016/j.applthermaleng.2015.12.056.
- S. C. Fok, W. Shen, and F. L. Tan, “Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks,” International Journal of Thermal Sciences, vol. 49, no. 1, pp. 109–117, Jan. 2010, doi: 10.1016/j.ijthermalsci.2009.06.011.
- A. Farzanehnia, M. Khatibi, M. Sardarabadi, and M. Passandideh-Fard, “Experimental investigation of multiwall carbon nanotube/paraffin based heat sink for electronic device thermal management,” Energy Conversion and Management, vol. 179, pp. 314–325, Jan. 2019, doi: 10.1016/j.enconman.2018.10.037.
- J. He, X. Yang, and G. Zhang, “A phase change material with enhanced thermal conductivity and secondary heat dissipation capability by introducing a binary thermal conductive skeleton for battery thermal management,” Applied Thermal Engineering, vol. 148, pp. 984–991, Feb. 2019, doi: 10.1016/j.applthermaleng.2018.11.100.
- M. Parhizi and A. Jain, “Analytical modeling and optimization of phase change thermal management of a Li-ion battery pack,” Applied Thermal Engineering, vol. 148, pp. 229–237, Feb. 2019, doi: 10.1016/j.applthermaleng.2018.11.017.
- Y.-H. Huang, W.-L. Cheng, and R. Zhao, “Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials,” Energy Conversion and Management, vol. 182, pp. 9–20, Feb. 2019, doi: 10.1016/j.enconman.2018.12.064.
- W. Li, F. Wang, W. Cheng, X. Chen, and Q. Zhao, “Study of using enhanced heat-transfer flexible phase change material film in thermal management of compact electronic device,” Energy Conversion and Management, vol. 210, p. 112680, Apr. 2020, doi: 10.1016/j.enconman.2020.112680.
- W.-W. Li, W.-L. Cheng, B. Xie, N. Liu, and L.-S. Zhang, “Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage,” Energy Conversion and Management, vol. 149, pp. 1–12, Oct. 2017, doi: 10.1016/j.enconman.2017.07.019.
- W.-L. Cheng, W.-W. Li, Y.-L. Nian, and W. Xia, “Study of thermal conductive enhancement mechanism and selection criteria of carbon-additive for composite phase change materials,” International Journal of Heat and Mass Transfer, vol. 116, pp. 507–511, Jan. 2018, doi: 10.1016/j.ijheatmasstransfer.2017.09.032.
- A. N. Desai, A. Gunjal, and V. K. Singh, “Numerical investigations of fin efficacy for phase change material (PCM) based thermal control module,” International Journal of Heat and Mass Transfer, vol. 147, p. 118855, Feb. 2020, doi: 10.1016/j.ijheatmasstransfer.2019.118855.
- M. Martinelli, F. Bentivoglio, A. Caron-Soupart, R. Couturier, J.-F. Fourmigue, and P. Marty, “Experimental study of a phase change thermal energy storage with copper foam,” Applied Thermal Engineering, vol. 101, pp. 247–261, May 2016, doi: 10.1016/j.applthermaleng.2016.02.095.
- A. Alrashdan, A. T. Mayyas, and S. Al-Hallaj, “Thermo-mechanical behaviors of the expanded graphite-phase change material matrix used for thermal management of Li-ion battery packs,” Journal of Materials Processing Technology, vol. 210, no. 1, pp. 174–179, Jan. 2010, doi: 10.1016/j.jmatprotec.2009.07.011.
- S. A. Nada and W. G. Alshaer, “Comprehensive parametric study of using carbon foam structures saturated with PCMs in thermal management of electronic systems,” Energy Conversion and Management, vol. 105, pp. 93–102, Nov. 2015, doi: 10.1016/j.enconman.2015.07.071.
- N. Aslfattahi et al., “Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as A new class of nanocomposites,” Journal of Energy Storage, vol. 27, p. 101115, Feb. 2020, doi: 10.1016/j.est.2019.101115.
- W. Zhu et al., “Carbon nanotube-Cu foam hybrid reinforcements in composite phase change materials with enhanced thermal conductivity,” Materials & Design, vol. 172, p. 107709, Jun. 2019, doi: 10.1016/j.matdes.2019.107709.
- Y. Xu, Q. Ren, Z.-J. Zheng, and Y.-L. He, “Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media,” Applied Energy, vol. 193, pp. 84–95, May 2017, doi: 10.1016/j.apenergy.2017.02.019.
- L. C. Wei and J. A. Malen, “Amplified charge and discharge rates in phase change materials for energy storage using spatially-enhanced thermal conductivity,” Applied Energy, vol. 181, pp. 224–231, Nov. 2016, doi: 10.1016/j.apenergy.2016.08.020.
- H. Wang, F. Wang, Z. Li, Y. Tang, B. Yu, and W. Yuan, “Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material,” Applied Energy, vol. 176, pp. 221–232, Aug. 2016, doi: 10.1016/j.apenergy.2016.05.050.
- W. Wu, G. Zhang, X. Ke, X. Yang, Z. Wang, and C. Liu, “Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management,” Energy Conversion and Management, vol. 101, pp. 278–284, Sep. 2015, doi: 10.1016/j.enconman.2015.05.050.
- S. K. Sahoo, M. K. Das, and P. Rath, “Application of TCE-PCM based heat sinks for cooling of electronic components: A review,” Renewable and Sustainable Energy Reviews, vol. 59, pp. 550–582, Jun. 2016, doi: 10.1016/j.rser.2015.12.238.
- V. Shatikian, G. Ziskind, and R. Letan, “Numerical investigation of a PCM-based heat sink with internal fins,” International Journal of Heat and Mass Transfer, vol. 48, no. 17, pp. 3689–3706, Aug. 2005, doi: 10.1016/j.ijheatmasstransfer.2004.10.042.
- V. Shatikian, G. Ziskind, and R. Letan, “Numerical investigation of a PCM-based heat sink with internal fins: Constant heat flux,” International Journal of Heat and Mass Transfer, vol. 51, no. 5–6, pp. 1488–1493, Mar. 2008, doi: 10.1016/j.ijheatmasstransfer.2007.11.036.
- Y.-H. Wang and Y.-T. Yang, “Three-dimensional transient cooling simulations of a portable electronic device using PCM (phase change materials) in multi-fin heat sink,” Energy, vol. 36, no. 8, pp. 5214–5224, Aug. 2011, doi: 10.1016/j.energy.2011.06.023.
- S. C. Fok, W. Shen, and F. L. Tan, “Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks,” International Journal of Thermal Sciences, vol. 49, no. 1, pp. 109–117, Jan. 2010, doi: 10.1016/j.ijthermalsci.2009.06.011.
- R. Kalbasi and M. R. Salimpour, “Constructal design of horizontal fins to improve the performance of phase change material rectangular enclosures,” Applied Thermal Engineering, vol. 91, pp. 234–244, Dec. 2015, doi: 10.1016/j.applthermaleng.2015.08.024.
- H. M. Ali and A. Arshad, “Experimental investigation of n-eicosane based circular pin-fin heat sinks for passive cooling of electronic devices,” International Journal of Heat and Mass Transfer, vol. 112, pp. 649–661, Sep. 2017, doi: 10.1016/j.ijheatmasstransfer.2017.05.004.
- X.-H. Yang, S.-C. Tan, Z.-Z. He, Y.-X. Zhou, and J. Liu, “Evaluation and optimization of low melting point metal PCM heat sink against ultra-high thermal shock,” Applied Thermal Engineering, vol. 119, pp. 34–41, Jun. 2017, doi: 10.1016/j.applthermaleng.2017.03.050.
- A. Arshad, H. M. Ali, M. Ali, and S. Manzoor, “Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: Effect of pin thickness and PCM volume fraction,” Applied Thermal Engineering, vol. 112, pp. 143–155, Feb. 2017, doi: 10.1016/j.applthermaleng.2016.10.090.
- A. Arshad, H. M. Ali, W.-M. Yan, A. K. Hussein, and M. Ahmadlouydarab, “An experimental study of enhanced heat sinks for thermal management using n-eicosane as phase change material,” Applied Thermal Engineering, vol. 132, pp. 52–66, Mar. 2018, doi: 10.1016/j.applthermaleng.2017.12.066.
- A. Arshad, H. M. Ali, S. Khushnood, and M. Jabbal, “Experimental investigation of PCM based round pin-fin heat sinks for thermal management of electronics: Effect of pin-fin diameter,” International Journal of Heat and Mass Transfer, vol. 117, pp. 861–872, Feb. 2018, doi: 10.1016/j.ijheatmasstransfer.2017.10.008.
- H. M. Ali, A. Arshad, M. Jabbal, and P. G. Verdin, “Thermal management of electronics devices with PCMs filled pin-fin heat sinks: A comparison,” International Journal of Heat and Mass Transfer, vol. 117, pp. 1199–1204, Feb. 2018, doi: 10.1016/j.ijheatmasstransfer.2017.10.065.
- M. J. Ashraf, H. M. Ali, H. Usman, and A. Arshad, “Experimental passive electronics cooling: Parametric investigation of pin-fin geometries and efficient phase change materials,” International Journal of Heat and Mass Transfer, vol. 115, pp. 251–263, Dec. 2017, doi: 10.1016/j.ijheatmasstransfer.2017.07.114.
- R. Baby and C. Balaji, “Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling,” International Journal of Heat and Mass Transfer, vol. 55, no. 5–6, pp. 1642–1649, Feb. 2012, doi: 10.1016/j.ijheatmasstransfer.2011.11.020.
- R. Baby and C. Balaji, “Thermal management of electronics using phase change material based pin fin heat sinks,” Journal of Physics: Conference Series, vol. 395, p. 012134, 2012, doi: 10.1088/1742-6596/395/1/012134.
- R. Srikanth, P. Nemani, and C. Balaji, “Multi-objective geometric optimization of a PCM based matrix type composite heat sink,” Applied Energy, vol. 156, pp. 703–714, Oct. 2015, doi: 10.1016/j.apenergy.2015.07.046.
- S. C. Fok, W. Shen, and F. L. Tan, “Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks,” International Journal of Thermal Sciences, vol. 49, no. 1, pp. 109–117, Jan. 2010, doi: 10.1016/j.ijthermalsci.2009.06.011.
- J. Hu, T. Guo, Y. Zhu, R. Hu, X. Luo, and T. Cheng, “Effect of melting temperature and amount of the phase change material (PCM) on thermal performance of hybrid heat sinks,” in 2014 15th International Conference on Electronic Packaging Technology, 2014, pp. 48–52. doi: 10.1109/ICEPT.2014.6922584.
- R. Pakrouh, M. J. Hosseini, A. A. Ranjbar, and R. Bahrampoury, “A numerical method for PCM-based pin fin heat sinks optimization,” Energy Conversion and Management, vol. 103, pp. 542–552, Oct. 2015, doi: 10.1016/j.enconman.2015.07.003.
- S. Gharbi, S. Harmand, and S. ben Jabrallah, “Experimental comparison between different configurations of PCM based heat sinks for cooling electronic components,” Applied Thermal Engineering, vol. 87, pp. 454–462, Aug. 2015, doi: 10.1016/j.applthermaleng.2015.05.024.
- H. M. Ali et al., “Thermal management of electronics: An experimental analysis of triangular, rectangular and circular pin-fin heat sinks for various PCMs,” International Journal of Heat and Mass Transfer, vol. 123, pp. 272–284, Aug. 2018, doi: 10.1016/j.ijheatmasstransfer.2018.02.044.
- L. Fan and J. M. Khodadadi, “An experimental investigation of enhanced thermal conductivity and expedited unidirectional freezing of cyclohexane-based nanoparticle suspensions utilized as nano-enhanced phase change materials (NePCM),” International Journal of Thermal Sciences, vol. 62, pp. 120–126, Dec. 2012, doi: 10.1016/j.ijthermalsci.2011.11.005.
- M. Li, “A nano-graphite/paraffin phase change material with high thermal conductivity,” Applied Energy, vol. 106, pp. 25–30, Jun. 2013, doi: 10.1016/j.apenergy.2013.01.031.
- L. Zhao, Y. Xing, Z. Wang, and X. Liu, “The passive thermal management system for electronic device using low-melting-point alloy as phase change material,” Applied Thermal Engineering, vol. 125, pp. 317–327, Oct. 2017, doi: 10.1016/j.applthermaleng.2017.07.004.
- Y. Tian and C. Y. Zhao, “A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals,” Energy, vol. 36, no. 9, pp. 5539–5546, Sep. 2011, doi: 10.1016/j.energy.2011.07.019.
- A. Sarı and A. Karaipekli, “Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material,” Applied Thermal Engineering, vol. 27, no. 8–9, pp. 1271–1277, Jun. 2007, doi: 10.1016/j.applthermaleng.2006.11.004.
- Z. Zhang, N. Zhang, J. Peng, X. Fang, X. Gao, and Y. Fang, “Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material,” Applied Energy, vol. 91, no. 1, pp. 426–431, Mar. 2012, doi: 10.1016/j.apenergy.2011.10.014.
- H. Wang, F. Wang, Z. Li, Y. Tang, B. Yu, and W. Yuan, “Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material,” Applied Energy, vol. 176, pp. 221–232, Aug. 2016, doi: 10.1016/j.apenergy.2016.05.050.
- H. Ge and J. Liu, “Cooling Capacity of Metal Phase Change Material for Thermal Management of Mobile Phone Subject to Long Time Communication,” Nov. 2013. doi: 10.1115/IMECE2013-66240.
- H. Ge and J. Liu, “Keeping Smartphones Cool With Gallium Phase Change Material,” Journal of Heat Transfer, vol. 135, no. 5, May 2013, doi: 10.1115/1.4023392.
- Y. Zhong, Q. Guo, S. Li, J. Shi, and L. Liu, “Thermal and mechanical properties of graphite foam/Wood’s alloy composite for thermal energy storage,” Carbon N Y, vol. 48, no. 5, pp. 1689–1692, Apr. 2010, doi: 10.1016/j.carbon.2010.01.002.
- C. Wang, T. Lin, N. Li, and H. Zheng, “Heat transfer enhancement of phase change composite material: Copper foam/paraffin,” Renewable Energy, vol. 96, pp. 960–965, Oct. 2016, doi: 10.1016/j.renene.2016.04.039.
References
X.-Q. Wang, A. S. Mujumdar, and C. Yap, “Effect of orientation for phase change material (PCM)-based heat sinks for transient thermal management of electric components,” International Communications in Heat and Mass Transfer, vol. 34, no. 7, pp. 801–808, Aug. 2007, doi: 10.1016/j.icheatmasstransfer.2007.03.008.
G. Setoh, F. L. Tan, and S. C. Fok, “Experimental studies on the use of a phase change material for cooling mobile phones,” International Communications in Heat and Mass Transfer, vol. 37, no. 9, pp. 1403–1410, Nov. 2010, doi: 10.1016/j.icheatmasstransfer.2010.07.013.
W. G. Alshaer, S. A. Nada, M. A. Rady, C. le Bot, and E. Palomo Del Barrio, “Numerical investigations of using carbon foam/PCM/Nano carbon tubes composites in thermal management of electronic equipment,” Energy Conversion and Management, vol. 89, pp. 873–884, Jan. 2015, doi: 10.1016/j.enconman.2014.10.045.
M. Emam, S. Ookawara, and M. Ahmed, “Thermal management of electronic devices and concentrator photovoltaic systems using phase change material heat sinks: Experimental investigations,” Renewable Energy, vol. 141, pp. 322–339, Oct. 2019, doi: 10.1016/j.renene.2019.03.151.
A. L. Moore and L. Shi, “Emerging challenges and materials for thermal management of electronics,” Materials Today, vol. 17, no. 4, pp. 163–174, May 2014, doi: 10.1016/j.mattod.2014.04.003.
G. C. Chou, “The Avionics Integrity Program,” Oct. 1988. doi: 10.4271/881351.
E. M. Alawadhi and C. H. Amon, “Performance analysis of an enhanced PCM thermal control unit,” in ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069), pp. 283–289. doi: 10.1109/ITHERM.2000.866837.
S. F. Hosseinizadeh, F. L. Tan, and S. M. Moosania, “Experimental and numerical studies on performance of PCM-based heat sink with different configurations of internal fins,” Applied Thermal Engineering, vol. 31, no. 17–18, pp. 3827–3838, Dec. 2011, doi: 10.1016/j.applthermaleng.2011.07.031.
S. Arora, “Selection of thermal management system for modular battery packs of electric vehicles: A review of existing and emerging technologies,” Journal of Power Sources, vol. 400, pp. 621–640, Oct. 2018, doi: 10.1016/j.jpowsour.2018.08.020.
T. Ahmed, M. Bhouri, D. Groulx, and M. A. White, “Passive thermal management of tablet PCs using phase change materials: Continuous operation,” International Journal of Thermal Sciences, vol. 134, pp. 101–115, Dec. 2018, doi: 10.1016/j.ijthermalsci.2018.08.010.
H. So and A. P. Pisano, “Micromachined passive phase-change cooler for thermal management of chip-level electronics,” International Journal of Heat and Mass Transfer, vol. 89, pp. 1164–1171, Oct. 2015, doi: 10.1016/j.ijheatmasstransfer.2015.04.097.
R. Kandasamy, X.-Q. Wang, and A. S. Mujumdar, “Transient cooling of electronics using phase change material (PCM)-based heat sinks,” Applied Thermal Engineering, vol. 28, no. 8–9, pp. 1047–1057, Jun. 2008, doi: 10.1016/j.applthermaleng.2007.06.010.
R. Kalbasi and M. R. Salimpour, “Constructal design of phase change material enclosures used for cooling electronic devices,” Applied Thermal Engineering, vol. 84, pp. 339–349, Jun. 2015, doi: 10.1016/j.applthermaleng.2015.03.031.
F. L. Tan and C. P. Tso, “Cooling of mobile electronic devices using phase change materials,” Applied Thermal Engineering, vol. 24, no. 2–3, pp. 159–169, Feb. 2004, doi: 10.1016/j.applthermaleng.2003.09.005.
P. GRODZKA, “Thermal control of spacecraft by use of solid-liquid phase-change materials,” Jan. 1970. doi: 10.2514/6.1970-12.
A. Jamekhorshid, S. M. Sadrameli, and M. Farid, “A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium,” Renewable and Sustainable Energy Reviews, vol. 31, pp. 531–542, Mar. 2014, doi: 10.1016/j.rser.2013.12.033.
F. Salaün, E. Devaux, S. Bourbigot, and P. Rumeau, “Influence of process parameters on microcapsules loaded with n-hexadecane prepared by in situ polymerization,” Chemical Engineering Journal, vol. 155, no. 1–2, pp. 457–465, Dec. 2009, doi: 10.1016/j.cej.2009.07.018.
D. Zhou, C. Y. Zhao, and Y. Tian, “Review on thermal energy storage with phase change materials (PCMs) in building applications,” Applied Energy, vol. 92, pp. 593–605, Apr. 2012, doi: 10.1016/j.apenergy.2011.08.025.
M. M. Farid, A. M. Khudhair, S. A. K. Razack, and S. Al-Hallaj, “A review on phase change energy storage: materials and applications,” Energy Conversion and Management, vol. 45, no. 9–10, pp. 1597–1615, Jun. 2004, doi: 10.1016/j.enconman.2003.09.015.
M. M. Kenisarin and K. M. Kenisarina, “Form-stable phase change materials for thermal energy storage,”Renewable and Sustainable Energy Reviews, vol. 16, no. 4, pp. 1999–2040, May 2012, doi: 10.1016/j.rser.2012.01.015.
G. Fang, H. Li, F. Yang, X. Liu, and S. Wu, “Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage,” Chemical Engineering Journal, vol. 153, no. 1–3, pp. 217–221, Nov. 2009, doi: 10.1016/j.cej.2009.06.019.
T. Khadiran, M. Z. Hussein, Z. Zainal, and R. Rusli, “Encapsulation techniques for organic phase change materials as thermal energy storage medium: A review,” Solar Energy Materials and Solar Cells, vol. 143, pp. 78–98, Dec. 2015, doi: 10.1016/j.solmat.2015.06.039.
Y. Zhang et al., “Hydrocolloids: Nova materials assisting encapsulation of volatile phase change materials for cryogenic energy transport and storage,” Chemical Engineering Journal, vol. 382, p. 123028, Feb. 2020, doi: 10.1016/j.cej.2019.123028.
S. Gharbi, S. Harmand, and S. ben Jabrallah, “Experimental comparison between different configurations of PCM based heat sinks for cooling electronic components,” Applied Thermal Engineering, vol. 87, pp. 454–462, Aug. 2015, doi: 10.1016/j.applthermaleng.2015.05.024.
R. Baby and C. Balaji, “Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling,” International Journal of Heat and Mass Transfer, vol. 55, no. 5–6, pp. 1642–1649, Feb. 2012, doi: 10.1016/j.ijheatmasstransfer.2011.11.020.
A. Abhat, “Short term thermal energy storage,” Revue de Physique Appliquée, vol. 15, no. 3, pp. 477–501, 1980, doi: 10.1051/rphysap:01980001503047700.
S. M. Sohel Murshed and C. A. Nieto de Castro, “A critical review of traditional and emerging techniques and fluids for electronics cooling,” Renewable and Sustainable Energy Reviews, vol. 78, pp. 821–833, Oct. 2017, doi: 10.1016/j.rser.2017.04.112.
H. Ye, Z. Wang, and L. Wang, “Effects of PCM on power consumption and temperature control performance of a thermal control system subject to periodic ambient conditions,” Applied Energy, vol. 190, pp. 213–221, Mar. 2017, doi: 10.1016/j.apenergy.2016.12.123.
B. Eanest Jebasingh and A. Valan Arasu, “A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications,” Energy Storage Materials, vol. 24, pp. 52–74, Jan. 2020, doi: 10.1016/j.ensm.2019.07.031.
P. J. Shamberger and N. M. Bruno, “Review of metallic phase change materials for high heat flux transient thermal management applications,” Applied Energy, vol. 258, p. 113955, Jan. 2020, doi: 10.1016/j.apenergy.2019.113955.
M. M. Umair, Y. Zhang, K. Iqbal, S. Zhang, and B. Tang, “Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review,” Applied Energy, vol. 235, pp. 846–873, Feb. 2019, doi: 10.1016/j.apenergy.2018.11.017.
C. S. Heu et al., “Layer-by-layer assembled phase change composite with paraffin for heat spreader with enhanced cooling capacity,” Energy Conversion and Management, vol. 204, p. 112287, Jan. 2020, doi: 10.1016/j.enconman.2019.112287.
S. K. Sahoo, P. Rath, and M. K. Das, “Numerical study of phase change material based orthotropic heat sink for thermal management of electronics components,” International Journal of Heat and Mass Transfer, vol. 103, pp. 855–867, Dec. 2016, doi: 10.1016/j.ijheatmasstransfer.2016.07.063.
G. A. Lane and H. E. Rossow, “Encapsulation of heat of fusion storage materials,” in 2nd southeastern conference on application of solar energy, Apr. 1976, pp. 442–450.
G. A. Lane, “Low temperature heat storage with phase change materials,” International Journal of Ambient Energy, vol. 1, no. 3, pp. 155–168, Jul. 1980, doi: 10.1080/01430750.1980.9675731.
Q. Xu, H. Liu, X. Wang, and D. Wu, “Smart design and construction of nanoflake-like MnO2/SiO2 hierarchical microcapsules containing phase change material for in-situ thermal management of supercapacitors,” Energy Conversion and Management, vol. 164, pp. 311–328, May 2018, doi: 10.1016/j.enconman.2018.03.006.
Y. Zhu et al., “Nanoencapsulated phase change materials with polymer-SiO2 hybrid shell materials: Compositions, morphologies, and properties,” Energy Conversion and Management, vol. 164, pp. 83–92, May 2018, doi: 10.1016/j.enconman.2018.02.075.
H. Peng et al., “n-Alkanes Phase Change Materials and Their Microencapsulation for Thermal Energy Storage: A Critical Review,” Energy & Fuels, vol. 32, no. 7, pp. 7262–7293, Jul. 2018, doi: 10.1021/acs.energyfuels.8b01347.
Y. Chevalier and M.-A. Bolzinger, “Emulsions stabilized with solid nanoparticles: Pickering emulsions,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 439, pp. 23–34, Dec. 2013, doi: 10.1016/j.colsurfa.2013.02.054.
D. J. French, P. Taylor, J. Fowler, and P. S. Clegg, “Making and breaking bridges in a Pickering emulsion,” Journal of Colloid and Interface Science, vol. 441, pp. 30–38, Mar. 2015, doi: 10.1016/j.jcis.2014.11.032.
F. Jiang, X. Wang, and D. Wu, “Design and synthesis of magnetic microcapsules based on n-eicosane core and Fe3O4/SiO2 hybrid shell for dual-functional phase change materials,” Applied Energy, vol. 134, pp. 456–468, Dec. 2014, doi: 10.1016/j.apenergy.2014.08.061.
H. Wang, L. Zhao, G. Song, G. Tang, and X. Shi, “Organic-inorganic hybrid shell microencapsulated phase change materials prepared, doi: 10.1016/j.solmat.2017.09.015.
J. Zhao et al., “Microencapsulated phase change materials with TiO 2 -doped PMMA shell for thermal energy storage and UV-shielding,” Solar Energy Materials and Solar Cells, vol. 168, pp. 62–68, Aug. 2017, doi: 10.1016/j.solmat.2017.04.014.
N. Sun and Z. Xiao, “Synthesis and Performances of Phase Change Materials Microcapsules with a Polymer/BN/TiO2 Hybrid Shell for Thermal Energy Storage,” Energy & Fuels, vol. 31, no. 9, pp. 10186–10195, Sep. 2017, doi: 10.1021/acs.energyfuels.7b01271.
H. Wang, L. Zhao, L. Chen, G. Song, and G. Tang, “Facile and low energy consumption synthesis of microencapsulated phase change materials with hybrid shell for thermal energy storage,” Journal of Physics and Chemistry of Solids, vol. 111, pp. 207–213, Dec. 2017, doi: 10.1016/j.jpcs.2017.08.002.
Y. Zhang, X. Zheng, H. Wang, and Q. Du, “Encapsulated phase change materials stabilized by modified graphene oxide,” Journal of Materials Chemistry A, vol. 2, no. 15, p. 5304, 2014, doi: 10.1039/c3ta15242a.
X. Zhu et al., “Stable microencapsulated phase change materials with ultrahigh payload for efficient cooling of mobile electronic devices,” Energy Conversion and Management, vol. 223, p. 113478, Nov. 2020, doi: 10.1016/j.enconman.2020.113478.
Y. Wang et al., “Lignin assisted Pickering emulsion polymerization to microencapsulate 1-tetradecanol for thermal management,” International Journal of Biological Macromolecules, vol. 146, pp. 1–8, Mar. 2020, doi: 10.1016/j.ijbiomac.2019.12.175.
B. Zhang et al., “Microencapsulation of Phase Change Materials with Polystyrene/Cellulose Nanocrystal Hybrid Shell via Pickering Emulsion Polymerization,” ACS Sustainable Chemistry & Engineering, vol. 7, no. 21, pp. 17756–17767, Nov. 2019, doi: 10.1021/acssuschemeng.9b04134.
L. Bai et al., “Self-Assembled Networks of Short and Long Chitin Nanoparticles for Oil/Water Interfacial Superstabilization,” ACS Sustainable Chemistry & Engineering, vol. 7, no. 7, pp. 6497–6511, Apr. 2019, doi: 10.1021/acssuschemeng.8b04023.
Y. Xiao et al., “In Vitro Digestion of Oil-in-Water Emulsions Stabilized by Regenerated Chitin,” Journal of Agricultural and Food Chemistry, vol. 66, no. 46, pp. 12344–12352, Nov. 2018, doi: 10.1021/acs.jafc.8b03873.
Y. Zhang et al., “Stabilizing oil-in-water emulsions with regenerated chitin nanofibers,” Food Chemistry, vol. 183, pp. 115–121, Sep. 2015, doi: 10.1016/j.foodchem.2015.03.030.
Y. Tomizawa, K. Sasaki, A. Kuroda, R. Takeda, and Y. Kaito, “Experimental and numerical study on phase change material (PCM) for thermal management of mobile devices,” Applied Thermal Engineering, vol. 98, pp. 320–329, Apr. 2016, doi: 10.1016/j.applthermaleng.2015.12.056.
S. C. Fok, W. Shen, and F. L. Tan, “Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks,” International Journal of Thermal Sciences, vol. 49, no. 1, pp. 109–117, Jan. 2010, doi: 10.1016/j.ijthermalsci.2009.06.011.
A. Farzanehnia, M. Khatibi, M. Sardarabadi, and M. Passandideh-Fard, “Experimental investigation of multiwall carbon nanotube/paraffin based heat sink for electronic device thermal management,” Energy Conversion and Management, vol. 179, pp. 314–325, Jan. 2019, doi: 10.1016/j.enconman.2018.10.037.
J. He, X. Yang, and G. Zhang, “A phase change material with enhanced thermal conductivity and secondary heat dissipation capability by introducing a binary thermal conductive skeleton for battery thermal management,” Applied Thermal Engineering, vol. 148, pp. 984–991, Feb. 2019, doi: 10.1016/j.applthermaleng.2018.11.100.
M. Parhizi and A. Jain, “Analytical modeling and optimization of phase change thermal management of a Li-ion battery pack,” Applied Thermal Engineering, vol. 148, pp. 229–237, Feb. 2019, doi: 10.1016/j.applthermaleng.2018.11.017.
Y.-H. Huang, W.-L. Cheng, and R. Zhao, “Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials,” Energy Conversion and Management, vol. 182, pp. 9–20, Feb. 2019, doi: 10.1016/j.enconman.2018.12.064.
W. Li, F. Wang, W. Cheng, X. Chen, and Q. Zhao, “Study of using enhanced heat-transfer flexible phase change material film in thermal management of compact electronic device,” Energy Conversion and Management, vol. 210, p. 112680, Apr. 2020, doi: 10.1016/j.enconman.2020.112680.
W.-W. Li, W.-L. Cheng, B. Xie, N. Liu, and L.-S. Zhang, “Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage,” Energy Conversion and Management, vol. 149, pp. 1–12, Oct. 2017, doi: 10.1016/j.enconman.2017.07.019.
W.-L. Cheng, W.-W. Li, Y.-L. Nian, and W. Xia, “Study of thermal conductive enhancement mechanism and selection criteria of carbon-additive for composite phase change materials,” International Journal of Heat and Mass Transfer, vol. 116, pp. 507–511, Jan. 2018, doi: 10.1016/j.ijheatmasstransfer.2017.09.032.
A. N. Desai, A. Gunjal, and V. K. Singh, “Numerical investigations of fin efficacy for phase change material (PCM) based thermal control module,” International Journal of Heat and Mass Transfer, vol. 147, p. 118855, Feb. 2020, doi: 10.1016/j.ijheatmasstransfer.2019.118855.
M. Martinelli, F. Bentivoglio, A. Caron-Soupart, R. Couturier, J.-F. Fourmigue, and P. Marty, “Experimental study of a phase change thermal energy storage with copper foam,” Applied Thermal Engineering, vol. 101, pp. 247–261, May 2016, doi: 10.1016/j.applthermaleng.2016.02.095.
A. Alrashdan, A. T. Mayyas, and S. Al-Hallaj, “Thermo-mechanical behaviors of the expanded graphite-phase change material matrix used for thermal management of Li-ion battery packs,” Journal of Materials Processing Technology, vol. 210, no. 1, pp. 174–179, Jan. 2010, doi: 10.1016/j.jmatprotec.2009.07.011.
S. A. Nada and W. G. Alshaer, “Comprehensive parametric study of using carbon foam structures saturated with PCMs in thermal management of electronic systems,” Energy Conversion and Management, vol. 105, pp. 93–102, Nov. 2015, doi: 10.1016/j.enconman.2015.07.071.
N. Aslfattahi et al., “Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as A new class of nanocomposites,” Journal of Energy Storage, vol. 27, p. 101115, Feb. 2020, doi: 10.1016/j.est.2019.101115.
W. Zhu et al., “Carbon nanotube-Cu foam hybrid reinforcements in composite phase change materials with enhanced thermal conductivity,” Materials & Design, vol. 172, p. 107709, Jun. 2019, doi: 10.1016/j.matdes.2019.107709.
Y. Xu, Q. Ren, Z.-J. Zheng, and Y.-L. He, “Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media,” Applied Energy, vol. 193, pp. 84–95, May 2017, doi: 10.1016/j.apenergy.2017.02.019.
L. C. Wei and J. A. Malen, “Amplified charge and discharge rates in phase change materials for energy storage using spatially-enhanced thermal conductivity,” Applied Energy, vol. 181, pp. 224–231, Nov. 2016, doi: 10.1016/j.apenergy.2016.08.020.
H. Wang, F. Wang, Z. Li, Y. Tang, B. Yu, and W. Yuan, “Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material,” Applied Energy, vol. 176, pp. 221–232, Aug. 2016, doi: 10.1016/j.apenergy.2016.05.050.
W. Wu, G. Zhang, X. Ke, X. Yang, Z. Wang, and C. Liu, “Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management,” Energy Conversion and Management, vol. 101, pp. 278–284, Sep. 2015, doi: 10.1016/j.enconman.2015.05.050.
S. K. Sahoo, M. K. Das, and P. Rath, “Application of TCE-PCM based heat sinks for cooling of electronic components: A review,” Renewable and Sustainable Energy Reviews, vol. 59, pp. 550–582, Jun. 2016, doi: 10.1016/j.rser.2015.12.238.
V. Shatikian, G. Ziskind, and R. Letan, “Numerical investigation of a PCM-based heat sink with internal fins,” International Journal of Heat and Mass Transfer, vol. 48, no. 17, pp. 3689–3706, Aug. 2005, doi: 10.1016/j.ijheatmasstransfer.2004.10.042.
V. Shatikian, G. Ziskind, and R. Letan, “Numerical investigation of a PCM-based heat sink with internal fins: Constant heat flux,” International Journal of Heat and Mass Transfer, vol. 51, no. 5–6, pp. 1488–1493, Mar. 2008, doi: 10.1016/j.ijheatmasstransfer.2007.11.036.
Y.-H. Wang and Y.-T. Yang, “Three-dimensional transient cooling simulations of a portable electronic device using PCM (phase change materials) in multi-fin heat sink,” Energy, vol. 36, no. 8, pp. 5214–5224, Aug. 2011, doi: 10.1016/j.energy.2011.06.023.
S. C. Fok, W. Shen, and F. L. Tan, “Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks,” International Journal of Thermal Sciences, vol. 49, no. 1, pp. 109–117, Jan. 2010, doi: 10.1016/j.ijthermalsci.2009.06.011.
R. Kalbasi and M. R. Salimpour, “Constructal design of horizontal fins to improve the performance of phase change material rectangular enclosures,” Applied Thermal Engineering, vol. 91, pp. 234–244, Dec. 2015, doi: 10.1016/j.applthermaleng.2015.08.024.
H. M. Ali and A. Arshad, “Experimental investigation of n-eicosane based circular pin-fin heat sinks for passive cooling of electronic devices,” International Journal of Heat and Mass Transfer, vol. 112, pp. 649–661, Sep. 2017, doi: 10.1016/j.ijheatmasstransfer.2017.05.004.
X.-H. Yang, S.-C. Tan, Z.-Z. He, Y.-X. Zhou, and J. Liu, “Evaluation and optimization of low melting point metal PCM heat sink against ultra-high thermal shock,” Applied Thermal Engineering, vol. 119, pp. 34–41, Jun. 2017, doi: 10.1016/j.applthermaleng.2017.03.050.
A. Arshad, H. M. Ali, M. Ali, and S. Manzoor, “Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: Effect of pin thickness and PCM volume fraction,” Applied Thermal Engineering, vol. 112, pp. 143–155, Feb. 2017, doi: 10.1016/j.applthermaleng.2016.10.090.
A. Arshad, H. M. Ali, W.-M. Yan, A. K. Hussein, and M. Ahmadlouydarab, “An experimental study of enhanced heat sinks for thermal management using n-eicosane as phase change material,” Applied Thermal Engineering, vol. 132, pp. 52–66, Mar. 2018, doi: 10.1016/j.applthermaleng.2017.12.066.
A. Arshad, H. M. Ali, S. Khushnood, and M. Jabbal, “Experimental investigation of PCM based round pin-fin heat sinks for thermal management of electronics: Effect of pin-fin diameter,” International Journal of Heat and Mass Transfer, vol. 117, pp. 861–872, Feb. 2018, doi: 10.1016/j.ijheatmasstransfer.2017.10.008.
H. M. Ali, A. Arshad, M. Jabbal, and P. G. Verdin, “Thermal management of electronics devices with PCMs filled pin-fin heat sinks: A comparison,” International Journal of Heat and Mass Transfer, vol. 117, pp. 1199–1204, Feb. 2018, doi: 10.1016/j.ijheatmasstransfer.2017.10.065.
M. J. Ashraf, H. M. Ali, H. Usman, and A. Arshad, “Experimental passive electronics cooling: Parametric investigation of pin-fin geometries and efficient phase change materials,” International Journal of Heat and Mass Transfer, vol. 115, pp. 251–263, Dec. 2017, doi: 10.1016/j.ijheatmasstransfer.2017.07.114.
R. Baby and C. Balaji, “Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling,” International Journal of Heat and Mass Transfer, vol. 55, no. 5–6, pp. 1642–1649, Feb. 2012, doi: 10.1016/j.ijheatmasstransfer.2011.11.020.
R. Baby and C. Balaji, “Thermal management of electronics using phase change material based pin fin heat sinks,” Journal of Physics: Conference Series, vol. 395, p. 012134, 2012, doi: 10.1088/1742-6596/395/1/012134.
R. Srikanth, P. Nemani, and C. Balaji, “Multi-objective geometric optimization of a PCM based matrix type composite heat sink,” Applied Energy, vol. 156, pp. 703–714, Oct. 2015, doi: 10.1016/j.apenergy.2015.07.046.
S. C. Fok, W. Shen, and F. L. Tan, “Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks,” International Journal of Thermal Sciences, vol. 49, no. 1, pp. 109–117, Jan. 2010, doi: 10.1016/j.ijthermalsci.2009.06.011.
J. Hu, T. Guo, Y. Zhu, R. Hu, X. Luo, and T. Cheng, “Effect of melting temperature and amount of the phase change material (PCM) on thermal performance of hybrid heat sinks,” in 2014 15th International Conference on Electronic Packaging Technology, 2014, pp. 48–52. doi: 10.1109/ICEPT.2014.6922584.
R. Pakrouh, M. J. Hosseini, A. A. Ranjbar, and R. Bahrampoury, “A numerical method for PCM-based pin fin heat sinks optimization,” Energy Conversion and Management, vol. 103, pp. 542–552, Oct. 2015, doi: 10.1016/j.enconman.2015.07.003.
S. Gharbi, S. Harmand, and S. ben Jabrallah, “Experimental comparison between different configurations of PCM based heat sinks for cooling electronic components,” Applied Thermal Engineering, vol. 87, pp. 454–462, Aug. 2015, doi: 10.1016/j.applthermaleng.2015.05.024.
H. M. Ali et al., “Thermal management of electronics: An experimental analysis of triangular, rectangular and circular pin-fin heat sinks for various PCMs,” International Journal of Heat and Mass Transfer, vol. 123, pp. 272–284, Aug. 2018, doi: 10.1016/j.ijheatmasstransfer.2018.02.044.
L. Fan and J. M. Khodadadi, “An experimental investigation of enhanced thermal conductivity and expedited unidirectional freezing of cyclohexane-based nanoparticle suspensions utilized as nano-enhanced phase change materials (NePCM),” International Journal of Thermal Sciences, vol. 62, pp. 120–126, Dec. 2012, doi: 10.1016/j.ijthermalsci.2011.11.005.
M. Li, “A nano-graphite/paraffin phase change material with high thermal conductivity,” Applied Energy, vol. 106, pp. 25–30, Jun. 2013, doi: 10.1016/j.apenergy.2013.01.031.
L. Zhao, Y. Xing, Z. Wang, and X. Liu, “The passive thermal management system for electronic device using low-melting-point alloy as phase change material,” Applied Thermal Engineering, vol. 125, pp. 317–327, Oct. 2017, doi: 10.1016/j.applthermaleng.2017.07.004.
Y. Tian and C. Y. Zhao, “A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals,” Energy, vol. 36, no. 9, pp. 5539–5546, Sep. 2011, doi: 10.1016/j.energy.2011.07.019.
A. Sarı and A. Karaipekli, “Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material,” Applied Thermal Engineering, vol. 27, no. 8–9, pp. 1271–1277, Jun. 2007, doi: 10.1016/j.applthermaleng.2006.11.004.
Z. Zhang, N. Zhang, J. Peng, X. Fang, X. Gao, and Y. Fang, “Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material,” Applied Energy, vol. 91, no. 1, pp. 426–431, Mar. 2012, doi: 10.1016/j.apenergy.2011.10.014.
H. Wang, F. Wang, Z. Li, Y. Tang, B. Yu, and W. Yuan, “Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material,” Applied Energy, vol. 176, pp. 221–232, Aug. 2016, doi: 10.1016/j.apenergy.2016.05.050.
H. Ge and J. Liu, “Cooling Capacity of Metal Phase Change Material for Thermal Management of Mobile Phone Subject to Long Time Communication,” Nov. 2013. doi: 10.1115/IMECE2013-66240.
H. Ge and J. Liu, “Keeping Smartphones Cool With Gallium Phase Change Material,” Journal of Heat Transfer, vol. 135, no. 5, May 2013, doi: 10.1115/1.4023392.
Y. Zhong, Q. Guo, S. Li, J. Shi, and L. Liu, “Thermal and mechanical properties of graphite foam/Wood’s alloy composite for thermal energy storage,” Carbon N Y, vol. 48, no. 5, pp. 1689–1692, Apr. 2010, doi: 10.1016/j.carbon.2010.01.002.
C. Wang, T. Lin, N. Li, and H. Zheng, “Heat transfer enhancement of phase change composite material: Copper foam/paraffin,” Renewable Energy, vol. 96, pp. 960–965, Oct. 2016, doi: 10.1016/j.renene.2016.04.039.