Towards sustainable energy: a comprehensive review on hydrogen integration in renewable energy systems
Corresponding Author(s) : Tanvir Amin
Future Energy,
2024: In Press
Abstract
As the world shifts towards sustainable energy sources, incorporating hydrogen into renewable energy systems emerges as a critical pathway. This thorough analysis delves deeply into the various facets of hydrogen integration, exploring its potential to revolutionize the energy landscape. Drawing upon recent advancements and research findings, the review examines the production, storage, and utilization of hydrogen within renewable energy frameworks. Key topics include electrolysis methods, storage technologies, and diverse applications spanning transportation, residential sectors, and industry. Furthermore, the review examines the obstacles and prospects linked with hydrogen integration, shedding light on policy frameworks, economic implications, and technological innovations driving its adoption. By offering insights into the multifaceted role of hydrogen, this review aims to inform researchers, stakeholders, and policymakers about the transformative potential of integrating green hydrogen into renewable energy systems for a sustainable future.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Kojima, “Hydrogen storage materials for hydrogen and energy carriers,” Int. J. Hydrog. Energy, vol. 44, no. 33, pp. 18179–18192, Jul. 2019, doi: 10.1016/j.ijhydene.2019.05.119.
- M. Mozakka, M. Salimi, M. Hosseinpour, and T. N. Borhani, “Why LNG Can Be a First Step in East Asia’s Energy Transition to a Low Carbon Economy: Evaluation of Challenges Using Game Theory,” Energies, vol. 15, no. 17, Art. no. 17, Jan. 2022, doi: 10.3390/en15176476.
- A. T. Hoang et al., “Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives,” Renew. Sustain. Energy Rev., vol. 188, p. 113790, Dec. 2023, doi: 10.1016/j.rser.2023.113790.
- M. Takach, M. Sarajlić, D. Peters, M. Kroener, F. Schuldt, and K. von Maydell, “Review of Hydrogen Production Techniques from Water Using Renewable Energy Sources and Its Storage in Salt Caverns,” Energies, vol. 15, no. 4, Art. no. 4, Jan. 2022, doi: 10.3390/en15041415.
- A. F. Alem, A. K. Worku, D. W. Ayele, N. G. Habtu, M. D. Ambaw, and T. A. Yemata, “Enhancing pseudocapacitive properties of cobalt oxide hierarchical nanostructures via iron doping,” Heliyon, vol. 9, no. 3, p. e13817, Mar. 2023, doi: 10.1016/j.heliyon.2023.e13817.
- M. Ji and J. Wang, “Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators,” Int. J. Hydrog. Energy, vol. 46, no. 78, pp. 38612–38635, Nov. 2021, doi: 10.1016/j.ijhydene.2021.09.142.
- M. Wang, G. Wang, Z. Sun, Y. Zhang, and D. Xu, “Review of renewable energy-based hydrogen production processes for sustainable energy innovation,” Glob. Energy Interconnect., vol. 2, no. 5, pp. 436–443, Oct. 2019, doi: 10.1016/j.gloei.2019.11.019.
- A. K. Worku, D. W. Ayele, and N. G. Habtu, “Recent advances and future perspectives in engineering of bifunctional electrocatalysts for rechargeable zinc–air batteries,” Mater. Today Adv., vol. 9, p. 100116, Mar. 2021, doi: 10.1016/j.mtadv.2020.100116.
- M. Yue, H. Lambert, E. Pahon, R. Roche, S. Jemei, and D. Hissel, “Hydrogen energy systems: A critical review of technologies, applications, trends and challenges,” Renew. Sustain. Energy Rev., vol. 146, p. 111180, Aug. 2021, doi: 10.1016/j.rser.2021.111180.
- “Global CO2 Emissions Level Off in 2019, with a Drop Predicted in 2020 - PMC.” Accessed: May 09, 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7361118/
- M. Al-Breiki and Y. Bicer, “Investigating the technical feasibility of various energy carriers for alternative and sustainable overseas energy transport scenarios,” Energy Convers. Manag., vol. 209, p. 112652, Apr. 2020, doi: 10.1016/j.enconman.2020.112652.
- S. T. Revankar, “Chapter Four - Nuclear Hydrogen Production,” in Storage and Hybridization of Nuclear Energy, H. Bindra and S. Revankar, Eds., Academic Press, 2019, pp. 49–117. doi: 10.1016/B978-0-12-813975-2.00004-1.
- N. A. Burton, R. V. Padilla, A. Rose, and H. Habibullah, “Increasing the efficiency of hydrogen production from solar powered water electrolysis,” Renew. Sustain. Energy Rev., vol. 135, p. 110255, Jan. 2021, doi: 10.1016/j.rser.2020.110255.
- “Geopolitics of the Energy Transformation: The Hydrogen Factor.” Accessed: May 09, 2024. [Online]. Available: https://www.irena.org/publications/2022/Jan/Geopolitics-of-the-Energy-Transformation-Hydrogen
- “Hydrogen | Free Full-Text | Cost Projection of Global Green Hydrogen Production Scenarios.” Accessed: May 09, 2024. [Online]. Available: https://www.mdpi.com/2673-4141/4/4/55
- M. T. Zun and B. C. McLellan, “Cost Projection of Global Green Hydrogen Production Scenarios,” Hydrogen, vol. 4, no. 4, Art. no. 4, Dec. 2023, doi: 10.3390/hydrogen4040055.
- C. Ejike, “The Advancement of Green Hydrogen and Prospects for the Future: A Brief Overview,” presented at the SPE Nigeria Annual International Conference and Exhibition, OnePetro, Aug. 2022. doi: 10.2118/211901-MS.
- “Hydrogen A renewable energy perspective.” Accessed: May 09, 2024. [Online]. Available: https://www.irena.org/publications/2019/Sep/Hydrogen-A-renewable-energy-perspective
- N. S. Muhammed et al., “Hydrogen production, transportation, utilization, and storage: Recent advances towards sustainable energy,” J. Energy Storage, vol. 73, p. 109207, Dec. 2023, doi: 10.1016/j.est.2023.109207.
- M. Atif Mahmood et al., “Sensitivity analysis of performance and thermal impacts of a single hydrogen fueled solid oxide fuel cell to optimize the operational and design parameters,” Sustain. Energy Technol. Assess., vol. 57, p. 103241, Jun. 2023, doi: 10.1016/j.seta.2023.103241.
- “Parametric sensitivity analysis to investigate the effects of operating and design parameters on single direct methane steam reforming solid oxide fuel cell performance and thermal impacts generation - ScienceDirect.” Accessed: May 09, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2590174523000302
- A. Kovač, M. Paranos, and D. Marciuš, “Hydrogen in energy transition: A review,” Int. J. Hydrog. Energy, vol. 46, no. 16, pp. 10016–10035, Mar. 2021, doi: 10.1016/j.ijhydene.2020.11.256.
- “Hydrogen and the Energy Transition.” Accessed: May 09, 2024. [Online]. Available: https://www.dvgw.de/english-pages/topics/gas-and-energy-transition/hydrogen-and-the-energy-transition
- A. Braun, “Electrochemical Energy Systems: Foundations, Energy Storage and Conversion,” in Electrochemical Energy Systems, De Gruyter, 2018. doi: 10.1515/9783110561838.
- “Use of hydrogen - U.S. Energy Information Administration (EIA).” Accessed: May 09, 2024. [Online]. Available: https://www.eia.gov/energyexplained/hydrogen/use-of-hydrogen.php
- M. Thema, F. Bauer, and M. Sterner, “Power-to-Gas: Electrolysis and methanation status review,” Renew. Sustain. Energy Rev., vol. 112, pp. 775–787, Sep. 2019, doi: 10.1016/j.rser.2019.06.030.
- J. O. Abe, A. P. I. Popoola, E. Ajenifuja, and O. M. Popoola, “Hydrogen energy, economy and storage: Review and recommendation,” Int. J. Hydrog. Energy, vol. 44, no. 29, pp. 15072–15086, Jun. 2019, doi: 10.1016/j.ijhydene.2019.04.068.
- K. Mazloomi and C. Gomes, “Hydrogen as an energy carrier: Prospects and challenges,” Renew. Sustain. Energy Rev., vol. 16, no. 5, pp. 3024–3033, Jun. 2012, doi: 10.1016/j.rser.2012.02.028.
- D. Parra, L. Valverde, F. J. Pino, and M. K. Patel, “A review on the role, cost and value of hydrogen energy systems for deep decarbonisation,” Renew. Sustain. Energy Rev., vol. 101, pp. 279–294, Mar. 2019, doi: 10.1016/j.rser.2018.11.010.
- R. Moradi and K. M. Groth, “Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis,” Int. J. Hydrog. Energy, vol. 44, no. 23, pp. 12254–12269, May 2019, doi: 10.1016/j.ijhydene.2019.03.041.
- S. Dutta, “A review on production, storage of hydrogen and its utilization as an energy resource,” J. Ind. Eng. Chem., vol. 20, no. 4, pp. 1148–1156, Jul. 2014, doi: 10.1016/j.jiec.2013.07.037.
- M. Bailera, P. Lisbona, L. M. Romeo, and S. Espatolero, “Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2,” Renew. Sustain. Energy Rev., vol. 69, pp. 292–312, Mar. 2017, doi: 10.1016/j.rser.2016.11.130.
- G. Gahleitner, “Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications,” Int. J. Hydrog. Energy, vol. 38, no. 5, pp. 2039–2061, Feb. 2013, doi: 10.1016/j.ijhydene.2012.12.010.
- E. S. Hanley, J. Deane, and B. Ó. Gallachóir, “The role of hydrogen in low carbon energy futures–A review of existing perspectives,” Renew. Sustain. Energy Rev., vol. 82, pp. 3027–3045, Feb. 2018, doi: 10.1016/j.rser.2017.10.034.
- R. Hren, A. Vujanović, Y. Van Fan, J. J. Klemeš, D. Krajnc, and L. Čuček, “Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment,” Renew. Sustain. Energy Rev., vol. 173, p. 113113, Mar. 2023, doi: 10.1016/j.rser.2022.113113.
- “EU Power Sector 2020 | Electricity Trends,” Ember. Accessed: May 09, 2024. [Online]. Available: https://ember-climate.org/insights/research/eu-power-sector-2020/
- J. Bastien and C. Handler, “Hydrogen Production from Renewable Energy Sources,” in 2006 IEEE EIC Climate Change Conference, May 2006, pp. 1–9. doi: 10.1109/EICCCC.2006.277218.
- “Other Renewable Energy Sources for Hydrogen Production | SpringerLink.” Accessed: May 09, 2024. [Online]. Available: https://link.springer.com/chapter/10.1007/978-88-470-1998-0_6
- “Hydrogen Production from Renewable Energy Sources, Storage, and Conversion into Electrical Energy | SpringerLink.” Accessed: May 09, 2024. [Online]. Available: https://link.springer.com/chapter/10.1007/978-981-19-0979-5_8
- R. M. Navarro, M. C. Sanchez-Sanchez, M. C. Alvarez-Galvan, J. L. G. Fierro, and S. M. Al-Zaharani, “Hydrogen Production from Renewables,” in Encyclopedia of Inorganic and Bioinorganic Chemistry, John Wiley & Sons, Ltd, 2011. doi: 10.1002/9781119951438.eibc0450.
- J. Turner et al., “Renewable hydrogen production,” Int. J. Energy Res., vol. 32, no. 5, pp. 379–407, 2008, doi: 10.1002/er.1372.
- D. Iribarren, A. Susmozas, F. Petrakopoulou, and J. Dufour, “Environmental and exergetic evaluation of hydrogen production via lignocellulosic biomass gasification,” J. Clean. Prod., vol. 69, pp. 165–175, Apr. 2014, doi: 10.1016/j.jclepro.2014.01.068.
- “Gasification of kitchen wastes in an updraft fluidized bed gasifier and simulation of the process with Aspen Plus - ScienceDirect.” Accessed: May 09, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0959652622032486
- “Study on pine biomass air and oxygen/steam gasification in the fixed bed gasifier - ScienceDirect.” Accessed: May 09, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0360319913010410
- Y. A. Lenis, J. F. Pérez, and A. Melgar, “Fixed bed gasification of Jacaranda Copaia wood: Effect of packing factor and oxygen enriched air,” Ind. Crops Prod., vol. 84, pp. 166–175, Jun. 2016, doi: 10.1016/j.indcrop.2016.01.053.
- “An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery - ScienceDirect.” Accessed: May 09, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0920586105007121
- P. Singh, S. Kumar, N. Srivastava, T. S. Pathak, and J. Chattopadhyay, “Chapter 20 - Hydrogen production from biomass gasification,” in Solar-Driven Green Hydrogen Generation and Storage, R. Srivastava, J. Chattopadhyay, and D. M. F. Santos, Eds., Elsevier, 2023, pp. 417–434. doi: 10.1016/B978-0-323-99580-1.00023-6.
- M. J. Khan and K. A. Al-attab, “Steam Gasification of Biomass for Hydrogen Production – A Review and Outlook,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 98, no. 2, Art. no. 2, Aug. 2022, doi: 10.37934/arfmts.98.2.175204.
- “Biomass Steam Gasification for Bio-hydrogen Production via Co2 Capture | SpringerLink.” Accessed: May 09, 2024. [Online]. Available: https://link.springer.com/chapter/10.1007/978-981-19-3410-0_2
- S. L. Narnaware, S. Narnaware, and P. Mahalle, “Bio-Hydrogen Production Through Gasification of Agro-residues,” in 2022 International Conference on Emerging Trends in Engineering and Medical Sciences (ICETEMS), Nov. 2022, pp. 80–83. doi: 10.1109/ICETEMS56252.2022.10093642.
- “Biomass Gasifier ‘“Tars”’: Their Nature, Formation, and Conversion (Technical Report) | OSTI.GOV.” Accessed: May 09, 2024. [Online]. Available: https://www.osti.gov/biblio/3726
- “Biomass Gasification in Fluidized Bed: Where To Locate the Dolomite To Improve Gasification? | Energy & Fuels.” Accessed: May 09, 2024. [Online]. Available: https://pubs.acs.org/doi/abs/10.1021/ef990019r
- “Hydrogen production from coal by separating carbon dioxide during gasification - ScienceDirect.” Accessed: May 09, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0016236102001874
- C. A. V. B. de Sales et al., “Experimental study on biomass (eucalyptus spp.) gasification in a two-stage downdraft reactor by using mixtures of air, saturated steam and oxygen as gasifying agents,” Energy Convers. Manag., vol. 145, pp. 314–323, Aug. 2017, doi: 10.1016/j.enconman.2017.04.101.
- J. Li et al., “Algae Pyrolysis in Molten NaOH–Na2CO3 for Hydrogen Production,” Environ. Sci. Technol., vol. 57, no. 16, pp. 6485–6493, Apr. 2023, doi: 10.1021/acs.est.3c01325.
- P. J. García-Nieto, E. García-Gonzalo, B. M. Paredes-Sánchez, and J. P. Paredes-Sánchez, “Modelling hydrogen production from biomass pyrolysis for energy systems using machine learning techniques,” Environ. Sci. Pollut. Res., vol. 30, no. 31, pp. 76977–76991, Jul. 2023, doi: 10.1007/s11356-023-27805-5.
- T. Becker, M. Richter, and D. W. Agar, “Methane pyrolysis: Kinetic studies and mechanical removal of carbon deposits in reactors of different materials,” Int. J. Hydrog. Energy, vol. 48, no. 6, pp. 2112–2129, Jan. 2023, doi: 10.1016/j.ijhydene.2022.10.069.
- “Processes | Free Full-Text | Catalytic Hydrothermal Liquefaction of Brachychiton populneus Biomass for the Production of High-Value Bio-Crude.” Accessed: May 09, 2024. [Online]. Available: https://www.mdpi.com/2227-9717/11/2/324
- H. Wang, H. Li, X. Han, Y. Zeng, and C. C. Xu, “Biomass Conversion by Hydrothermal Liquefaction Technology,” in Reference Module in Earth Systems and Environmental Sciences, Elsevier, 2023. doi: 10.1016/B978-0-323-93940-9.00033-5.
- N. Nirmala, M. Subathra, S. Shyam, S. S. Dawn, K. P. Gopinath, and J. Arun, “11 - Hydrothermal gasification of biomass for hydrogen production: Advances, challenges, and prospects,” in Innovations in Thermochemical Technologies for Biofuel Processing, S. Nanda and D.-V. Vo, Eds., Elsevier, 2022, pp. 259–273. doi: 10.1016/B978-0-323-85586-0.00011-1.
- J. Chi and H. Yu, “Water electrolysis based on renewable energy for hydrogen production,” Chin. J. Catal., vol. 39, no. 3, pp. 390–394, Mar. 2018, doi: 10.1016/S1872-2067(17)62949-8.
- A. Hauch, S. D. Ebbesen, S. H. Jensen, and M. Mogensen, “Highly efficient high temperature electrolysis,” J. Mater. Chem., vol. 18, no. 20, pp. 2331–2340, May 2008, doi: 10.1039/B718822F.
- “Energies | Free Full-Text | Hydrogen Production Methods Based on Solar and Wind Energy: A Review.” Accessed: May 10, 2024. [Online]. Available: https://www.mdpi.com/1996-1073/16/2/757
- “Energies | Free Full-Text | Hydrogen Generation from a Small-Scale Solar Photovoltaic Thermal (PV/T) Electrolyzer System: Numerical Model and Experimental Verification.” Accessed: May 10, 2024. [Online]. Available: https://www.mdpi.com/1996-1073/13/11/2997
- “The potential and economic viability of hydrogen production from the use of hydroelectric and wind farms surplus energy in Brazil: A national and pioneering analysis - ScienceDirect.” Accessed: May 10, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0360319919332185
- Z. Luo, X. Wang, H. Wen, and A. Pei, “Hydrogen production from offshore wind power in South China,” Int. J. Hydrog. Energy, vol. 47, no. 58, pp. 24558–24568, Jul. 2022, doi: 10.1016/j.ijhydene.2022.03.162.
- “Energies | Free Full-Text | Permeability Modeling and Estimation of Hydrogen Loss through Polymer Sealing Liners in Underground Hydrogen Storage.” Accessed: May 10, 2024. [Online]. Available: https://www.mdpi.com/1996-1073/15/7/2663
- K. Sivula, F. Le Formal, and M. Grätzel, “Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes,” ChemSusChem, vol. 4, no. 4, pp. 432–449, 2011, doi: 10.1002/cssc.201000416.
- P. Kumar et al., “Photoelectrochemical splitting of water to produce a power appetizer Hydrogen: A green system for future –( A short review),” Orient. J. Chem., vol. 32, pp. 1473–1483, Jun. 2016, doi: 10.13005/ojc/320321.
- “Earth-Abundant Heterogeneous Water Oxidation Catalysts | Chemical Reviews.” Accessed: May 10, 2024. [Online]. Available: https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.6b00398
- P. A. Pilavachi, A. I. Chatzipanagi, and A. I. Spyropoulou, “Evaluation of hydrogen production methods using the Analytic Hierarchy Process,” Int. J. Hydrog. Energy, vol. 34, no. 13, pp. 5294–5303, Jul. 2009, doi: 10.1016/j.ijhydene.2009.04.026.
- W. C. Nadaleti, G. Borges dos Santos, and V. A. Lourenço, “The potential and economic viability of hydrogen production from the use of hydroelectric and wind farms surplus energy in Brazil: A national and pioneering analysis,” Int. J. Hydrog. Energy, vol. 45, no. 3, pp. 1373–1384, Jan. 2020, doi: 10.1016/j.ijhydene.2019.08.199.
- “A wind-power fuel-cell hybrid system study on the non-interconnected Aegean islands grid - ScienceDirect.” Accessed: May 11, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0960148104004252
- Ø. Ulleberg, T. Nakken, and A. Eté, “The wind/hydrogen demonstration system at Utsira in Norway: Evaluation of system performance using operational data and updated hydrogen energy system modeling tools,” Int. J. Hydrog. Energy, vol. 35, no. 5, pp. 1841–1852, Mar. 2010, doi: 10.1016/j.ijhydene.2009.10.077.
- S. M. Muyeen, R. Takahashi, and J. Tamura, “Electrolyzer switching strategy for hydrogen generation from variable speed wind generator,” Electr. Power Syst. Res., vol. 81, no. 5, pp. 1171–1179, May 2011, doi: 10.1016/j.epsr.2011.01.005.
- T. Demirdelen, F. Ekinci, B. D. Mert, İ. Karasu, and M. Tümay, “Green touch for hydrogen production via alkaline electrolysis: The semi-flexible PV panels mounted wind turbine design, production and performance analysis,” Int. J. Hydrog. Energy, vol. 45, no. 18, pp. 10680–10695, Apr. 2020, doi: 10.1016/j.ijhydene.2020.02.007.
- Y. Mao et al., “Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review,” Appl. Energy, vol. 267, p. 114860, Jun. 2020, doi: 10.1016/j.apenergy.2020.114860.
- T. Pregger, D. Graf, W. Krewitt, C. Sattler, M. Roeb, and S. Möller, “Prospects of solar thermal hydrogen production processes,” Int. J. Hydrog. Energy, vol. 34, no. 10, pp. 4256–4267, May 2009, doi: 10.1016/j.ijhydene.2009.03.025.
- “Non-precious hydrogen evolution reaction catalysts: Stepping forward to practical polymer electrolyte membrane-based zero-gap water electrolyzers - ScienceDirect.” Accessed: May 11, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S1385894721052554
- “Performance evaluation of PV panels/wind turbines hybrid system for green hydrogen generation and storage: Energy, exergy, economic, and enviroeconomic - ScienceDirect.” Accessed: May 11, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0196890422006665
- “A review of water electrolysis–based systems for hydrogen production using hybrid/solar/wind energy systems | Environmental Science and Pollution Research.” Accessed: May 11, 2024. [Online]. Available: https://link.springer.com/article/10.1007/s11356-022-23323-y
- M. Carmo, D. L. Fritz, J. Mergel, and D. Stolten, “A comprehensive review on PEM water electrolysis,” Int. J. Hydrog. Energy, vol. 38, no. 12, pp. 4901–4934, Apr. 2013, doi: 10.1016/j.ijhydene.2013.01.151.
- “Technology comparison for green hydrogen production - IOPscience.” Accessed: May 11, 2024. [Online]. Available: https://iopscience.iop.org/article/10.1088/1755-1315/1008/1/012007/meta
- E. A. Chadegani, M. Sharifishourabi, and F. Hajiarab, “Comprehensive assessment of a multi-generation system integrated with a desalination system: Modeling and analysing,” Energy Convers. Manag., vol. 174, pp. 20–32, Oct. 2018, doi: 10.1016/j.enconman.2018.08.011.
- X. Li, X. Sun, Q. Song, Z. Yang, H. Wang, and Y. Duan, “A critical review on integrated system design of solar thermochemical water-splitting cycle for hydrogen production,” Int. J. Hydrog. Energy, vol. 47, no. 79, pp. 33619–33642, Sep. 2022, doi: 10.1016/j.ijhydene.2022.07.249.
- “IEA – International Energy Agency,” IEA. Accessed: May 10, 2024. [Online]. Available: https://www.iea.org/reports/world-energy-outlook-2019/%20electricity.%20[Accessed%2026%20February%202020].
- “Energies | Free Full-Text | A Critical Study of Stationary Energy Storage Policies in Australia in an International Context: The Role of Hydrogen and Battery Technologies.” Accessed: May 10, 2024. [Online]. Available: https://www.mdpi.com/1996-1073/9/9/674
- P. Burmistrz, T. Chmielniak, L. Czepirski, and M. Gazda-Grzywacz, “Carbon footprint of the hydrogen production process utilizing subbituminous coal and lignite gasification,” J. Clean. Prod., vol. 139, pp. 858–865, Dec. 2016, doi: 10.1016/j.jclepro.2016.08.112.
- T. P. Yadav, A. Kumar, S. K. Verma, and N. K. Mukhopadhyay, “High-Entropy Alloys for Solid Hydrogen Storage: Potentials and Prospects,” Trans. Indian Natl. Acad. Eng., vol. 7, no. 1, pp. 147–156, Mar. 2022, doi: 10.1007/s41403-021-00316-w.
- “2024 Mirai Specifications | Toyota.com.” Accessed: May 10, 2024. [Online]. Available: https://www.toyota.com/mirai/features/
- “Solar hydrogen hybrid energy systems for off-grid electricity supply: A critical review.” Accessed: May 10, 2024. [Online]. Available: https://ideas.repec.org/a/eee/rensus/v52y2015icp1791-1808.html
- T. Egeland-Eriksen, A. Hajizadeh, and S. Sartori, “Hydrogen-based systems for integration of renewable energy in power systems: Achievements and perspectives,” Int. J. Hydrog. Energy, vol. 46, no. 63, pp. 31963–31983, Sep. 2021, doi: 10.1016/j.ijhydene.2021.06.218.
- “Handbook of Hydrogen Storage | Wiley Online Books.” Accessed: May 10, 2024. [Online]. Available: https://onlinelibrary.wiley.com/doi/book/10.1002/9783527629800
- R. R. Shahi, T. P. Yadav, M. A. Shaz, and O. N. Srivastava, “Effects of mechanical milling on desorption kinetics and phase transformation of LiNH2/MgH2 mixture,” Int. J. Hydrog. Energy, vol. 33, no. 21, pp. 6188–6194, Nov. 2008, doi: 10.1016/j.ijhydene.2008.07.029.
- A. Züttel, “Materials for hydrogen storage,” Mater. Today, vol. 6, no. 9, pp. 24–33, Sep. 2003, doi: 10.1016/S1369-7021(03)00922-2.
- “Europe’s Energy Transition - Insights for Policy Making.” Accessed: May 11, 2024. [Online]. Available: https://www.ifri.org/en/publications/publications-ifri/ouvrages-ifri/europes-energy-transition-insights-policy-making
- Y. Honsho, M. Nagayama, J. Matsuda, K. Ito, K. Sasaki, and A. Hayashi, “Durability of PEM water electrolyzer against wind power voltage fluctuation,” J. Power Sources, vol. 564, no. 232826, Apr. 2023, doi: 10.1016/j.jpowsour.2023.232826.
- W.-J. Yang and O. Aydin, “Wind energy–hydrogen storage hybrid power generation,” Int. J. Energy Res., vol. 25, no. 5, pp. 449–463, 2001, doi: 10.1002/er.696.
- “Economic feasibility studies of high pressure PEM water electrolysis for distributed H2 refueling stations - ScienceDirect.” Accessed: May 12, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0196890418301511
- J. Cheng, H. Zhang, G. Chen, and Y. Zhang, “Study of IrxRu1−xO2 oxides as anodic electrocatalysts for solid polymer electrolyte water electrolysis,” Electrochimica Acta, vol. 54, no. 26, pp. 6250–6256, Nov. 2009, doi: 10.1016/j.electacta.2009.05.090.
- G. A. Karim, “Hydrogen as a spark ignition engine fuel,” Int. J. Hydrog. Energy, vol. 28, no. 5, pp. 569–577, May 2003, doi: 10.1016/S0360-3199(02)00150-7.
- A. Midilli, M. Ay, I. Dincer, and M. A. Rosen, “On hydrogen and hydrogen energy strategies: I: current status and needs,” Renew. Sustain. Energy Rev., vol. 9, no. 3, pp. 255–271, Jun. 2005, doi: 10.1016/j.rser.2004.05.003.
- J. Nowotny and T. N. Veziroglu, “Impact of hydrogen on the environment,” Int. J. Hydrog. Energy, vol. 36, no. 20, pp. 13218–13224, Oct. 2011, doi: 10.1016/j.ijhydene.2011.07.071.
- E. I. Epelle et al., “A comprehensive review of hydrogen production and storage: A focus on the role of nanomaterials,” Int. J. Hydrog. Energy, vol. 47, no. 47, pp. 20398–20431, Jun. 2022, doi: 10.1016/j.ijhydene.2022.04.227.
- H. Anuta, P. Ralon, M. Taylor, and F. La Camera, “Renewable power generation costs in 2018,” Int. Renew. Energy Agency Abu Dhabi, 2019, Accessed: May 12, 2024. [Online]. Available: https://scholar.google.com/scholar?cluster=17001533289473269807&hl=en&oi=scholarr
- R. S. El-Emam and H. Özcan, “Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production,” J. Clean. Prod., vol. 220, pp. 593–609, May 2019, doi: 10.1016/j.jclepro.2019.01.309.
- “Design and analysis of an integrated concentrated solar and wind energy system with storage - Sezer - 2019 - International Journal of Energy Research - Wiley Online Library.” Accessed: May 12, 2024. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/er.4456
- A. K. Worku, D. W. Ayele, D. B. Deepak, A. Y. Gebreyohannes, S. D. Agegnehu, and M. L. Kolhe, “Recent Advances and Challenges of Hydrogen Production Technologies via Renewable Energy Sources,” Adv. Energy Sustain. Res., vol. 5, no. 5, p. 2300273, 2024, doi: 10.1002/aesr.202300273.
- D. Gielen, E. Taibi, and R. Miranda, Hydrogen: A renewable energy perspective. 2019.
References
Y. Kojima, “Hydrogen storage materials for hydrogen and energy carriers,” Int. J. Hydrog. Energy, vol. 44, no. 33, pp. 18179–18192, Jul. 2019, doi: 10.1016/j.ijhydene.2019.05.119.
M. Mozakka, M. Salimi, M. Hosseinpour, and T. N. Borhani, “Why LNG Can Be a First Step in East Asia’s Energy Transition to a Low Carbon Economy: Evaluation of Challenges Using Game Theory,” Energies, vol. 15, no. 17, Art. no. 17, Jan. 2022, doi: 10.3390/en15176476.
A. T. Hoang et al., “Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives,” Renew. Sustain. Energy Rev., vol. 188, p. 113790, Dec. 2023, doi: 10.1016/j.rser.2023.113790.
M. Takach, M. Sarajlić, D. Peters, M. Kroener, F. Schuldt, and K. von Maydell, “Review of Hydrogen Production Techniques from Water Using Renewable Energy Sources and Its Storage in Salt Caverns,” Energies, vol. 15, no. 4, Art. no. 4, Jan. 2022, doi: 10.3390/en15041415.
A. F. Alem, A. K. Worku, D. W. Ayele, N. G. Habtu, M. D. Ambaw, and T. A. Yemata, “Enhancing pseudocapacitive properties of cobalt oxide hierarchical nanostructures via iron doping,” Heliyon, vol. 9, no. 3, p. e13817, Mar. 2023, doi: 10.1016/j.heliyon.2023.e13817.
M. Ji and J. Wang, “Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators,” Int. J. Hydrog. Energy, vol. 46, no. 78, pp. 38612–38635, Nov. 2021, doi: 10.1016/j.ijhydene.2021.09.142.
M. Wang, G. Wang, Z. Sun, Y. Zhang, and D. Xu, “Review of renewable energy-based hydrogen production processes for sustainable energy innovation,” Glob. Energy Interconnect., vol. 2, no. 5, pp. 436–443, Oct. 2019, doi: 10.1016/j.gloei.2019.11.019.
A. K. Worku, D. W. Ayele, and N. G. Habtu, “Recent advances and future perspectives in engineering of bifunctional electrocatalysts for rechargeable zinc–air batteries,” Mater. Today Adv., vol. 9, p. 100116, Mar. 2021, doi: 10.1016/j.mtadv.2020.100116.
M. Yue, H. Lambert, E. Pahon, R. Roche, S. Jemei, and D. Hissel, “Hydrogen energy systems: A critical review of technologies, applications, trends and challenges,” Renew. Sustain. Energy Rev., vol. 146, p. 111180, Aug. 2021, doi: 10.1016/j.rser.2021.111180.
“Global CO2 Emissions Level Off in 2019, with a Drop Predicted in 2020 - PMC.” Accessed: May 09, 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7361118/
M. Al-Breiki and Y. Bicer, “Investigating the technical feasibility of various energy carriers for alternative and sustainable overseas energy transport scenarios,” Energy Convers. Manag., vol. 209, p. 112652, Apr. 2020, doi: 10.1016/j.enconman.2020.112652.
S. T. Revankar, “Chapter Four - Nuclear Hydrogen Production,” in Storage and Hybridization of Nuclear Energy, H. Bindra and S. Revankar, Eds., Academic Press, 2019, pp. 49–117. doi: 10.1016/B978-0-12-813975-2.00004-1.
N. A. Burton, R. V. Padilla, A. Rose, and H. Habibullah, “Increasing the efficiency of hydrogen production from solar powered water electrolysis,” Renew. Sustain. Energy Rev., vol. 135, p. 110255, Jan. 2021, doi: 10.1016/j.rser.2020.110255.
“Geopolitics of the Energy Transformation: The Hydrogen Factor.” Accessed: May 09, 2024. [Online]. Available: https://www.irena.org/publications/2022/Jan/Geopolitics-of-the-Energy-Transformation-Hydrogen
“Hydrogen | Free Full-Text | Cost Projection of Global Green Hydrogen Production Scenarios.” Accessed: May 09, 2024. [Online]. Available: https://www.mdpi.com/2673-4141/4/4/55
M. T. Zun and B. C. McLellan, “Cost Projection of Global Green Hydrogen Production Scenarios,” Hydrogen, vol. 4, no. 4, Art. no. 4, Dec. 2023, doi: 10.3390/hydrogen4040055.
C. Ejike, “The Advancement of Green Hydrogen and Prospects for the Future: A Brief Overview,” presented at the SPE Nigeria Annual International Conference and Exhibition, OnePetro, Aug. 2022. doi: 10.2118/211901-MS.
“Hydrogen A renewable energy perspective.” Accessed: May 09, 2024. [Online]. Available: https://www.irena.org/publications/2019/Sep/Hydrogen-A-renewable-energy-perspective
N. S. Muhammed et al., “Hydrogen production, transportation, utilization, and storage: Recent advances towards sustainable energy,” J. Energy Storage, vol. 73, p. 109207, Dec. 2023, doi: 10.1016/j.est.2023.109207.
M. Atif Mahmood et al., “Sensitivity analysis of performance and thermal impacts of a single hydrogen fueled solid oxide fuel cell to optimize the operational and design parameters,” Sustain. Energy Technol. Assess., vol. 57, p. 103241, Jun. 2023, doi: 10.1016/j.seta.2023.103241.
“Parametric sensitivity analysis to investigate the effects of operating and design parameters on single direct methane steam reforming solid oxide fuel cell performance and thermal impacts generation - ScienceDirect.” Accessed: May 09, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2590174523000302
A. Kovač, M. Paranos, and D. Marciuš, “Hydrogen in energy transition: A review,” Int. J. Hydrog. Energy, vol. 46, no. 16, pp. 10016–10035, Mar. 2021, doi: 10.1016/j.ijhydene.2020.11.256.
“Hydrogen and the Energy Transition.” Accessed: May 09, 2024. [Online]. Available: https://www.dvgw.de/english-pages/topics/gas-and-energy-transition/hydrogen-and-the-energy-transition
A. Braun, “Electrochemical Energy Systems: Foundations, Energy Storage and Conversion,” in Electrochemical Energy Systems, De Gruyter, 2018. doi: 10.1515/9783110561838.
“Use of hydrogen - U.S. Energy Information Administration (EIA).” Accessed: May 09, 2024. [Online]. Available: https://www.eia.gov/energyexplained/hydrogen/use-of-hydrogen.php
M. Thema, F. Bauer, and M. Sterner, “Power-to-Gas: Electrolysis and methanation status review,” Renew. Sustain. Energy Rev., vol. 112, pp. 775–787, Sep. 2019, doi: 10.1016/j.rser.2019.06.030.
J. O. Abe, A. P. I. Popoola, E. Ajenifuja, and O. M. Popoola, “Hydrogen energy, economy and storage: Review and recommendation,” Int. J. Hydrog. Energy, vol. 44, no. 29, pp. 15072–15086, Jun. 2019, doi: 10.1016/j.ijhydene.2019.04.068.
K. Mazloomi and C. Gomes, “Hydrogen as an energy carrier: Prospects and challenges,” Renew. Sustain. Energy Rev., vol. 16, no. 5, pp. 3024–3033, Jun. 2012, doi: 10.1016/j.rser.2012.02.028.
D. Parra, L. Valverde, F. J. Pino, and M. K. Patel, “A review on the role, cost and value of hydrogen energy systems for deep decarbonisation,” Renew. Sustain. Energy Rev., vol. 101, pp. 279–294, Mar. 2019, doi: 10.1016/j.rser.2018.11.010.
R. Moradi and K. M. Groth, “Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis,” Int. J. Hydrog. Energy, vol. 44, no. 23, pp. 12254–12269, May 2019, doi: 10.1016/j.ijhydene.2019.03.041.
S. Dutta, “A review on production, storage of hydrogen and its utilization as an energy resource,” J. Ind. Eng. Chem., vol. 20, no. 4, pp. 1148–1156, Jul. 2014, doi: 10.1016/j.jiec.2013.07.037.
M. Bailera, P. Lisbona, L. M. Romeo, and S. Espatolero, “Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2,” Renew. Sustain. Energy Rev., vol. 69, pp. 292–312, Mar. 2017, doi: 10.1016/j.rser.2016.11.130.
G. Gahleitner, “Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications,” Int. J. Hydrog. Energy, vol. 38, no. 5, pp. 2039–2061, Feb. 2013, doi: 10.1016/j.ijhydene.2012.12.010.
E. S. Hanley, J. Deane, and B. Ó. Gallachóir, “The role of hydrogen in low carbon energy futures–A review of existing perspectives,” Renew. Sustain. Energy Rev., vol. 82, pp. 3027–3045, Feb. 2018, doi: 10.1016/j.rser.2017.10.034.
R. Hren, A. Vujanović, Y. Van Fan, J. J. Klemeš, D. Krajnc, and L. Čuček, “Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment,” Renew. Sustain. Energy Rev., vol. 173, p. 113113, Mar. 2023, doi: 10.1016/j.rser.2022.113113.
“EU Power Sector 2020 | Electricity Trends,” Ember. Accessed: May 09, 2024. [Online]. Available: https://ember-climate.org/insights/research/eu-power-sector-2020/
J. Bastien and C. Handler, “Hydrogen Production from Renewable Energy Sources,” in 2006 IEEE EIC Climate Change Conference, May 2006, pp. 1–9. doi: 10.1109/EICCCC.2006.277218.
“Other Renewable Energy Sources for Hydrogen Production | SpringerLink.” Accessed: May 09, 2024. [Online]. Available: https://link.springer.com/chapter/10.1007/978-88-470-1998-0_6
“Hydrogen Production from Renewable Energy Sources, Storage, and Conversion into Electrical Energy | SpringerLink.” Accessed: May 09, 2024. [Online]. Available: https://link.springer.com/chapter/10.1007/978-981-19-0979-5_8
R. M. Navarro, M. C. Sanchez-Sanchez, M. C. Alvarez-Galvan, J. L. G. Fierro, and S. M. Al-Zaharani, “Hydrogen Production from Renewables,” in Encyclopedia of Inorganic and Bioinorganic Chemistry, John Wiley & Sons, Ltd, 2011. doi: 10.1002/9781119951438.eibc0450.
J. Turner et al., “Renewable hydrogen production,” Int. J. Energy Res., vol. 32, no. 5, pp. 379–407, 2008, doi: 10.1002/er.1372.
D. Iribarren, A. Susmozas, F. Petrakopoulou, and J. Dufour, “Environmental and exergetic evaluation of hydrogen production via lignocellulosic biomass gasification,” J. Clean. Prod., vol. 69, pp. 165–175, Apr. 2014, doi: 10.1016/j.jclepro.2014.01.068.
“Gasification of kitchen wastes in an updraft fluidized bed gasifier and simulation of the process with Aspen Plus - ScienceDirect.” Accessed: May 09, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0959652622032486
“Study on pine biomass air and oxygen/steam gasification in the fixed bed gasifier - ScienceDirect.” Accessed: May 09, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0360319913010410
Y. A. Lenis, J. F. Pérez, and A. Melgar, “Fixed bed gasification of Jacaranda Copaia wood: Effect of packing factor and oxygen enriched air,” Ind. Crops Prod., vol. 84, pp. 166–175, Jun. 2016, doi: 10.1016/j.indcrop.2016.01.053.
“An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery - ScienceDirect.” Accessed: May 09, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0920586105007121
P. Singh, S. Kumar, N. Srivastava, T. S. Pathak, and J. Chattopadhyay, “Chapter 20 - Hydrogen production from biomass gasification,” in Solar-Driven Green Hydrogen Generation and Storage, R. Srivastava, J. Chattopadhyay, and D. M. F. Santos, Eds., Elsevier, 2023, pp. 417–434. doi: 10.1016/B978-0-323-99580-1.00023-6.
M. J. Khan and K. A. Al-attab, “Steam Gasification of Biomass for Hydrogen Production – A Review and Outlook,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 98, no. 2, Art. no. 2, Aug. 2022, doi: 10.37934/arfmts.98.2.175204.
“Biomass Steam Gasification for Bio-hydrogen Production via Co2 Capture | SpringerLink.” Accessed: May 09, 2024. [Online]. Available: https://link.springer.com/chapter/10.1007/978-981-19-3410-0_2
S. L. Narnaware, S. Narnaware, and P. Mahalle, “Bio-Hydrogen Production Through Gasification of Agro-residues,” in 2022 International Conference on Emerging Trends in Engineering and Medical Sciences (ICETEMS), Nov. 2022, pp. 80–83. doi: 10.1109/ICETEMS56252.2022.10093642.
“Biomass Gasifier ‘“Tars”’: Their Nature, Formation, and Conversion (Technical Report) | OSTI.GOV.” Accessed: May 09, 2024. [Online]. Available: https://www.osti.gov/biblio/3726
“Biomass Gasification in Fluidized Bed: Where To Locate the Dolomite To Improve Gasification? | Energy & Fuels.” Accessed: May 09, 2024. [Online]. Available: https://pubs.acs.org/doi/abs/10.1021/ef990019r
“Hydrogen production from coal by separating carbon dioxide during gasification - ScienceDirect.” Accessed: May 09, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0016236102001874
C. A. V. B. de Sales et al., “Experimental study on biomass (eucalyptus spp.) gasification in a two-stage downdraft reactor by using mixtures of air, saturated steam and oxygen as gasifying agents,” Energy Convers. Manag., vol. 145, pp. 314–323, Aug. 2017, doi: 10.1016/j.enconman.2017.04.101.
J. Li et al., “Algae Pyrolysis in Molten NaOH–Na2CO3 for Hydrogen Production,” Environ. Sci. Technol., vol. 57, no. 16, pp. 6485–6493, Apr. 2023, doi: 10.1021/acs.est.3c01325.
P. J. García-Nieto, E. García-Gonzalo, B. M. Paredes-Sánchez, and J. P. Paredes-Sánchez, “Modelling hydrogen production from biomass pyrolysis for energy systems using machine learning techniques,” Environ. Sci. Pollut. Res., vol. 30, no. 31, pp. 76977–76991, Jul. 2023, doi: 10.1007/s11356-023-27805-5.
T. Becker, M. Richter, and D. W. Agar, “Methane pyrolysis: Kinetic studies and mechanical removal of carbon deposits in reactors of different materials,” Int. J. Hydrog. Energy, vol. 48, no. 6, pp. 2112–2129, Jan. 2023, doi: 10.1016/j.ijhydene.2022.10.069.
“Processes | Free Full-Text | Catalytic Hydrothermal Liquefaction of Brachychiton populneus Biomass for the Production of High-Value Bio-Crude.” Accessed: May 09, 2024. [Online]. Available: https://www.mdpi.com/2227-9717/11/2/324
H. Wang, H. Li, X. Han, Y. Zeng, and C. C. Xu, “Biomass Conversion by Hydrothermal Liquefaction Technology,” in Reference Module in Earth Systems and Environmental Sciences, Elsevier, 2023. doi: 10.1016/B978-0-323-93940-9.00033-5.
N. Nirmala, M. Subathra, S. Shyam, S. S. Dawn, K. P. Gopinath, and J. Arun, “11 - Hydrothermal gasification of biomass for hydrogen production: Advances, challenges, and prospects,” in Innovations in Thermochemical Technologies for Biofuel Processing, S. Nanda and D.-V. Vo, Eds., Elsevier, 2022, pp. 259–273. doi: 10.1016/B978-0-323-85586-0.00011-1.
J. Chi and H. Yu, “Water electrolysis based on renewable energy for hydrogen production,” Chin. J. Catal., vol. 39, no. 3, pp. 390–394, Mar. 2018, doi: 10.1016/S1872-2067(17)62949-8.
A. Hauch, S. D. Ebbesen, S. H. Jensen, and M. Mogensen, “Highly efficient high temperature electrolysis,” J. Mater. Chem., vol. 18, no. 20, pp. 2331–2340, May 2008, doi: 10.1039/B718822F.
“Energies | Free Full-Text | Hydrogen Production Methods Based on Solar and Wind Energy: A Review.” Accessed: May 10, 2024. [Online]. Available: https://www.mdpi.com/1996-1073/16/2/757
“Energies | Free Full-Text | Hydrogen Generation from a Small-Scale Solar Photovoltaic Thermal (PV/T) Electrolyzer System: Numerical Model and Experimental Verification.” Accessed: May 10, 2024. [Online]. Available: https://www.mdpi.com/1996-1073/13/11/2997
“The potential and economic viability of hydrogen production from the use of hydroelectric and wind farms surplus energy in Brazil: A national and pioneering analysis - ScienceDirect.” Accessed: May 10, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0360319919332185
Z. Luo, X. Wang, H. Wen, and A. Pei, “Hydrogen production from offshore wind power in South China,” Int. J. Hydrog. Energy, vol. 47, no. 58, pp. 24558–24568, Jul. 2022, doi: 10.1016/j.ijhydene.2022.03.162.
“Energies | Free Full-Text | Permeability Modeling and Estimation of Hydrogen Loss through Polymer Sealing Liners in Underground Hydrogen Storage.” Accessed: May 10, 2024. [Online]. Available: https://www.mdpi.com/1996-1073/15/7/2663
K. Sivula, F. Le Formal, and M. Grätzel, “Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes,” ChemSusChem, vol. 4, no. 4, pp. 432–449, 2011, doi: 10.1002/cssc.201000416.
P. Kumar et al., “Photoelectrochemical splitting of water to produce a power appetizer Hydrogen: A green system for future –( A short review),” Orient. J. Chem., vol. 32, pp. 1473–1483, Jun. 2016, doi: 10.13005/ojc/320321.
“Earth-Abundant Heterogeneous Water Oxidation Catalysts | Chemical Reviews.” Accessed: May 10, 2024. [Online]. Available: https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.6b00398
P. A. Pilavachi, A. I. Chatzipanagi, and A. I. Spyropoulou, “Evaluation of hydrogen production methods using the Analytic Hierarchy Process,” Int. J. Hydrog. Energy, vol. 34, no. 13, pp. 5294–5303, Jul. 2009, doi: 10.1016/j.ijhydene.2009.04.026.
W. C. Nadaleti, G. Borges dos Santos, and V. A. Lourenço, “The potential and economic viability of hydrogen production from the use of hydroelectric and wind farms surplus energy in Brazil: A national and pioneering analysis,” Int. J. Hydrog. Energy, vol. 45, no. 3, pp. 1373–1384, Jan. 2020, doi: 10.1016/j.ijhydene.2019.08.199.
“A wind-power fuel-cell hybrid system study on the non-interconnected Aegean islands grid - ScienceDirect.” Accessed: May 11, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0960148104004252
Ø. Ulleberg, T. Nakken, and A. Eté, “The wind/hydrogen demonstration system at Utsira in Norway: Evaluation of system performance using operational data and updated hydrogen energy system modeling tools,” Int. J. Hydrog. Energy, vol. 35, no. 5, pp. 1841–1852, Mar. 2010, doi: 10.1016/j.ijhydene.2009.10.077.
S. M. Muyeen, R. Takahashi, and J. Tamura, “Electrolyzer switching strategy for hydrogen generation from variable speed wind generator,” Electr. Power Syst. Res., vol. 81, no. 5, pp. 1171–1179, May 2011, doi: 10.1016/j.epsr.2011.01.005.
T. Demirdelen, F. Ekinci, B. D. Mert, İ. Karasu, and M. Tümay, “Green touch for hydrogen production via alkaline electrolysis: The semi-flexible PV panels mounted wind turbine design, production and performance analysis,” Int. J. Hydrog. Energy, vol. 45, no. 18, pp. 10680–10695, Apr. 2020, doi: 10.1016/j.ijhydene.2020.02.007.
Y. Mao et al., “Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review,” Appl. Energy, vol. 267, p. 114860, Jun. 2020, doi: 10.1016/j.apenergy.2020.114860.
T. Pregger, D. Graf, W. Krewitt, C. Sattler, M. Roeb, and S. Möller, “Prospects of solar thermal hydrogen production processes,” Int. J. Hydrog. Energy, vol. 34, no. 10, pp. 4256–4267, May 2009, doi: 10.1016/j.ijhydene.2009.03.025.
“Non-precious hydrogen evolution reaction catalysts: Stepping forward to practical polymer electrolyte membrane-based zero-gap water electrolyzers - ScienceDirect.” Accessed: May 11, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S1385894721052554
“Performance evaluation of PV panels/wind turbines hybrid system for green hydrogen generation and storage: Energy, exergy, economic, and enviroeconomic - ScienceDirect.” Accessed: May 11, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0196890422006665
“A review of water electrolysis–based systems for hydrogen production using hybrid/solar/wind energy systems | Environmental Science and Pollution Research.” Accessed: May 11, 2024. [Online]. Available: https://link.springer.com/article/10.1007/s11356-022-23323-y
M. Carmo, D. L. Fritz, J. Mergel, and D. Stolten, “A comprehensive review on PEM water electrolysis,” Int. J. Hydrog. Energy, vol. 38, no. 12, pp. 4901–4934, Apr. 2013, doi: 10.1016/j.ijhydene.2013.01.151.
“Technology comparison for green hydrogen production - IOPscience.” Accessed: May 11, 2024. [Online]. Available: https://iopscience.iop.org/article/10.1088/1755-1315/1008/1/012007/meta
E. A. Chadegani, M. Sharifishourabi, and F. Hajiarab, “Comprehensive assessment of a multi-generation system integrated with a desalination system: Modeling and analysing,” Energy Convers. Manag., vol. 174, pp. 20–32, Oct. 2018, doi: 10.1016/j.enconman.2018.08.011.
X. Li, X. Sun, Q. Song, Z. Yang, H. Wang, and Y. Duan, “A critical review on integrated system design of solar thermochemical water-splitting cycle for hydrogen production,” Int. J. Hydrog. Energy, vol. 47, no. 79, pp. 33619–33642, Sep. 2022, doi: 10.1016/j.ijhydene.2022.07.249.
“IEA – International Energy Agency,” IEA. Accessed: May 10, 2024. [Online]. Available: https://www.iea.org/reports/world-energy-outlook-2019/%20electricity.%20[Accessed%2026%20February%202020].
“Energies | Free Full-Text | A Critical Study of Stationary Energy Storage Policies in Australia in an International Context: The Role of Hydrogen and Battery Technologies.” Accessed: May 10, 2024. [Online]. Available: https://www.mdpi.com/1996-1073/9/9/674
P. Burmistrz, T. Chmielniak, L. Czepirski, and M. Gazda-Grzywacz, “Carbon footprint of the hydrogen production process utilizing subbituminous coal and lignite gasification,” J. Clean. Prod., vol. 139, pp. 858–865, Dec. 2016, doi: 10.1016/j.jclepro.2016.08.112.
T. P. Yadav, A. Kumar, S. K. Verma, and N. K. Mukhopadhyay, “High-Entropy Alloys for Solid Hydrogen Storage: Potentials and Prospects,” Trans. Indian Natl. Acad. Eng., vol. 7, no. 1, pp. 147–156, Mar. 2022, doi: 10.1007/s41403-021-00316-w.
“2024 Mirai Specifications | Toyota.com.” Accessed: May 10, 2024. [Online]. Available: https://www.toyota.com/mirai/features/
“Solar hydrogen hybrid energy systems for off-grid electricity supply: A critical review.” Accessed: May 10, 2024. [Online]. Available: https://ideas.repec.org/a/eee/rensus/v52y2015icp1791-1808.html
T. Egeland-Eriksen, A. Hajizadeh, and S. Sartori, “Hydrogen-based systems for integration of renewable energy in power systems: Achievements and perspectives,” Int. J. Hydrog. Energy, vol. 46, no. 63, pp. 31963–31983, Sep. 2021, doi: 10.1016/j.ijhydene.2021.06.218.
“Handbook of Hydrogen Storage | Wiley Online Books.” Accessed: May 10, 2024. [Online]. Available: https://onlinelibrary.wiley.com/doi/book/10.1002/9783527629800
R. R. Shahi, T. P. Yadav, M. A. Shaz, and O. N. Srivastava, “Effects of mechanical milling on desorption kinetics and phase transformation of LiNH2/MgH2 mixture,” Int. J. Hydrog. Energy, vol. 33, no. 21, pp. 6188–6194, Nov. 2008, doi: 10.1016/j.ijhydene.2008.07.029.
A. Züttel, “Materials for hydrogen storage,” Mater. Today, vol. 6, no. 9, pp. 24–33, Sep. 2003, doi: 10.1016/S1369-7021(03)00922-2.
“Europe’s Energy Transition - Insights for Policy Making.” Accessed: May 11, 2024. [Online]. Available: https://www.ifri.org/en/publications/publications-ifri/ouvrages-ifri/europes-energy-transition-insights-policy-making
Y. Honsho, M. Nagayama, J. Matsuda, K. Ito, K. Sasaki, and A. Hayashi, “Durability of PEM water electrolyzer against wind power voltage fluctuation,” J. Power Sources, vol. 564, no. 232826, Apr. 2023, doi: 10.1016/j.jpowsour.2023.232826.
W.-J. Yang and O. Aydin, “Wind energy–hydrogen storage hybrid power generation,” Int. J. Energy Res., vol. 25, no. 5, pp. 449–463, 2001, doi: 10.1002/er.696.
“Economic feasibility studies of high pressure PEM water electrolysis for distributed H2 refueling stations - ScienceDirect.” Accessed: May 12, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0196890418301511
J. Cheng, H. Zhang, G. Chen, and Y. Zhang, “Study of IrxRu1−xO2 oxides as anodic electrocatalysts for solid polymer electrolyte water electrolysis,” Electrochimica Acta, vol. 54, no. 26, pp. 6250–6256, Nov. 2009, doi: 10.1016/j.electacta.2009.05.090.
G. A. Karim, “Hydrogen as a spark ignition engine fuel,” Int. J. Hydrog. Energy, vol. 28, no. 5, pp. 569–577, May 2003, doi: 10.1016/S0360-3199(02)00150-7.
A. Midilli, M. Ay, I. Dincer, and M. A. Rosen, “On hydrogen and hydrogen energy strategies: I: current status and needs,” Renew. Sustain. Energy Rev., vol. 9, no. 3, pp. 255–271, Jun. 2005, doi: 10.1016/j.rser.2004.05.003.
J. Nowotny and T. N. Veziroglu, “Impact of hydrogen on the environment,” Int. J. Hydrog. Energy, vol. 36, no. 20, pp. 13218–13224, Oct. 2011, doi: 10.1016/j.ijhydene.2011.07.071.
E. I. Epelle et al., “A comprehensive review of hydrogen production and storage: A focus on the role of nanomaterials,” Int. J. Hydrog. Energy, vol. 47, no. 47, pp. 20398–20431, Jun. 2022, doi: 10.1016/j.ijhydene.2022.04.227.
H. Anuta, P. Ralon, M. Taylor, and F. La Camera, “Renewable power generation costs in 2018,” Int. Renew. Energy Agency Abu Dhabi, 2019, Accessed: May 12, 2024. [Online]. Available: https://scholar.google.com/scholar?cluster=17001533289473269807&hl=en&oi=scholarr
R. S. El-Emam and H. Özcan, “Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production,” J. Clean. Prod., vol. 220, pp. 593–609, May 2019, doi: 10.1016/j.jclepro.2019.01.309.
“Design and analysis of an integrated concentrated solar and wind energy system with storage - Sezer - 2019 - International Journal of Energy Research - Wiley Online Library.” Accessed: May 12, 2024. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/er.4456
A. K. Worku, D. W. Ayele, D. B. Deepak, A. Y. Gebreyohannes, S. D. Agegnehu, and M. L. Kolhe, “Recent Advances and Challenges of Hydrogen Production Technologies via Renewable Energy Sources,” Adv. Energy Sustain. Res., vol. 5, no. 5, p. 2300273, 2024, doi: 10.1002/aesr.202300273.
D. Gielen, E. Taibi, and R. Miranda, Hydrogen: A renewable energy perspective. 2019.