Unlocking the potential of green hydrogen for a sustainable energy future: a review of production methods and challenges
Corresponding Author(s) : MD Farhan Imtiaz Chowdhury
Future Energy,
2024: In Press
Abstract
The buzz around green hydrogen is growing louder as a game-changer in the fight for a clean and sustainable energy future. This article dives into the coolest ways to create this eco-friendly fuel, exploring methods like splitting water with electricity, turning plant matter into gas, and even some cutting-edge techniques in the pipeline. This research dives deep into the latest breakthroughs in electrocatalyst and electrode materials, the secret ingredients that could supercharge hydrogen production, making it cleaner and cheaper. While good old water electrolysis using alkaline and PEM electrolyzers is the current champ, it's still a bit pricey and not as efficient as we'd like. Thankfully, innovative ways to design these "fuel-splitting champions" and integrate them with renewable energy sources are showing promise as solutions. But green hydrogen isn't just some cool science experiment; it's a potential game-changer for cleaning up our transportation, factories, and even the way we power our homes, all to fight climate change. The study also identifies areas where we need more research and ironing out of kinks before widespread use. It emphasizes the importance of keeping the innovation train rolling, smart investments in this technology, and government policies that give it a green light. By pushing green hydrogen forward, we can slash greenhouse gasses, become more energy-independent, and finally build that sustainable energy future we've all been dreaming of!
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Davidson, D.J. Exnovating for a Renewable Energy Transition. Nat. Energy 2019, 4, 254–256, doi:10.1038/s41560-019-0369-3.
- Salehabadi, A.; Ahmad, M.I.; Ismail, N.; Morad, N.; Enhessari, M. Overview of Energy. In Energy, Society and the Environment: Solid-State Hydrogen Storage Materials; Salehabadi, A., Ahmad, M.I., Ismail, N., Morad, N., Enhessari, M., Eds.; Springer: Singapore, 2020; pp. 9–26 ISBN 9789811549069.
- Zhang, B.; Seddon, D. Hydroprocessing Catalysts And Processes: The Challenges For Biofuels Production; World Scientific, 2018; ISBN 978-1-78634-485-4.
- He, F.; Li, F. Hydrogen Production from Methane and Solar Energy – Process Evaluations and Comparison Studies. Int. J. Hydrog. Energy 2014, 39, 18092–18102, doi:10.1016/j.ijhydene.2014.05.089.
- The Hydrogen Economy | SpringerLink Available online: https://link.springer.com/chapter/10.1007/978-1-84882-511-6_8 (accessed on 14 June 2024).
- Demirbas, A. Biofuels Sources, Biofuel Policy, Biofuel Economy and Global Biofuel Projections. Energy Convers. Manag. 2008, 49, 2106–2116, doi:10.1016/j.enconman.2008.02.020.
- Agrafiotis, C.; Roeb, M.; Sattler, C. A Review on Solar Thermal Syngas Production via Redox Pair-Based Water/Carbon Dioxide Splitting Thermochemical Cycles. Renew. Sustain. Energy Rev. 2015, 42, 254–285, doi:10.1016/j.rser.2014.09.039.
- Ismail, A.A.; Bahnemann, D.W. Photochemical Splitting of Water for Hydrogen Production by Photocatalysis: A Review. Sol. Energy Mater. Sol. Cells 2014, 128, 85–101, doi:10.1016/j.solmat.2014.04.037.
- Steinfeld, A. Solar Thermochemical Production of Hydrogen––a Review. Sol. Energy 2005, 78, 603–615, doi:10.1016/j.solener.2003.12.012.
- Colón, G. Towards the Hydrogen Production by Photocatalysis. Appl. Catal. Gen. 2016, 518, 48–59, doi:10.1016/j.apcata.2015.11.042.
- Veeramani, K.; Janani, G.; Kim, J.; Surendran, S.; Lim, J.; Jesudass, S.C.; Mahadik, S.; lee, H.; Kim, T.-H.; Kim, J.K.; et al. Hydrogen and Value-Added Products Yield from Hybrid Water Electrolysis: A Critical Review on Recent Developments. Renew. Sustain. Energy Rev. 2023, 177, 113227, doi:10.1016/j.rser.2023.113227.
- Nanoenhanced Materials for Photolytic Hydrogen Production - Nanotechnology for Energy Sustainability - Wiley Online Library Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527696109.ch26 (accessed on 14 June 2024).
- Li, W.; Li, S.; M. Abed, A.; Ayed, H.; Khadimallah, M.A.; Deifalla, A.; Lee, V.F. Enhancing Green Hydrogen Production via Improvement of an Integrated Double Flash Geothermal Cycle; Multi-Criteria Optimization and Exergo-Environmental Evaluation. Case Stud. Therm. Eng. 2024, 59, 104538, doi:10.1016/j.csite.2024.104538.
- Shiva Kumar, S.; Ramakrishna, S.U.B.; Rama Devi, B.; Himabindu, V. Phosphorus-Doped Graphene Supported Palladium (Pd/PG) Electrocatalyst for the Hydrogen Evolution Reaction in PEM Water Electrolysis. Int. J. Green Energy 2018, 15, 558–567, doi:10.1080/15435075.2018.1508468.
- Yu, F.; Yu, L.; Mishra, I.K.; Yu, Y.; Ren, Z.F.; Zhou, H.Q. Recent Developments in Earth-Abundant and Non-Noble Electrocatalysts for Water Electrolysis. Mater. Today Phys. 2018, 7, 121–138, doi:10.1016/j.mtphys.2018.11.007.
- Development of Water Electrolysis in the European Union | Hydrogen Knowledge Centre Available online: https://www.h2knowledgecentre.com/content/researchpaper1120 (accessed on 19 June 2024).
- Shiva Kumar, S.; Himabindu, V. Hydrogen Production by PEM Water Electrolysis – A Review. Mater. Sci. Energy Technol. 2019, 2, 442–454, doi:10.1016/j.mset.2019.03.002.
- Kuckshinrichs, W.; Ketelaer, T.; Koj, J.C. Economic Analysis of Improved Alkaline Water Electrolysis. Front. Energy Res. 2017, 5, doi:10.3389/fenrg.2017.00001.
- Grigoriev, S.A.; Fateev, V.N.; Bessarabov, D.G.; Millet, P. Current Status, Research Trends, and Challenges in Water Electrolysis Science and Technology. Int. J. Hydrog. Energy 2020, 45, 26036–26058, doi:10.1016/j.ijhydene.2020.03.109.
- Phosphorus-Doped Graphene Supported Palladium (Pd/PG) Electrocatalyst for the Hydrogen Evolution Reaction in PEM Water Electrolysis: International Journal of Green Energy: Vol 15, No 10 Available online: https://www.tandfonline.com/doi/abs/10.1080/15435075.2018.1508468 (accessed on 19 June 2024).
- Bertuccioli, L.; Chan, A.; Hart, D.; Lehner, F.; Madden, B.; Standen, E. Development of Water Electrolysis in the European Union. 2014.
- Bianco, E.; Blanco, H. Green Hydrogen: A Guide to Policy Making. 2020.
- Liu, S.; Li, B.; Mohite, S.V.; Devaraji, P.; Mao, L.; Xing, R. Ultrathin MoS2 Nanosheets in Situ Grown on Rich Defective Ni0.96S as Heterojunction Bifunctional Electrocatalysts for Alkaline Water Electrolysis. Int. J. Hydrog. Energy 2020, 45, 29929–29937, doi:10.1016/j.ijhydene.2020.08.034.
- Qazi, U.Y.; Javaid, R.; Zahid, M.; Tahir, N.; Afzal, A.; Lin, X.-M. Bimetallic NiCo–NiCoO2 Nano-Heterostructures Embedded on Copper Foam as a Self-Supported Bifunctional Electrode for Water Oxidation and Hydrogen Production in Alkaline Media. Int. J. Hydrog. Energy 2021, 46, 18936–18948, doi:10.1016/j.ijhydene.2021.03.046.
- Metal–Organic Framework-Derived 2D NiCoP Nanoflakes from Layered Double Hydroxide Nanosheets for Efficient Electrocatalytic Water Splitting at High Current Densities | ACS Sustainable Chemistry & Engineering Available online: https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.2c03250 (accessed on 19 June 2024).
- Transition Metal/Metal Oxide Interface (Ni–Mo–O/Ni4Mo) Stabilized on N-Doped Carbon Paper for Enhanced Hydrogen Evolution Reaction in Alkaline Conditions | Industrial & Engineering Chemistry Research Available online: https://pubs.acs.org/doi/abs/10.1021/acs.iecr.1c00039 (accessed on 19 June 2024).
- Lv, Z.; Ma, W.; Wang, M.; Dang, J.; Jian, K.; Liu, D.; Huang, D. Co-Constructing Interfaces of Multiheterostructure on MXene (Ti3C2Tx)-Modified 3D Self-Supporting Electrode for Ultraefficient Electrocatalytic HER in Alkaline Media. Adv. Funct. Mater. 2021, 31, 2102576, doi:10.1002/adfm.202102576.
- Wang, J.; Gao, Y.; Kong, H.; Kim, J.; Choi, S.; Ciucci, F.; Hao, Y.; Yang, S.; Shao, Z.; Lim, J. Non-Precious-Metal Catalysts for Alkaline Water Electrolysis: Operando Characterizations, Theoretical Calculations, and Recent Advances. Chem. Soc. Rev. 2020, 49, 9154–9196, doi:10.1039/D0CS00575D.
- Andrew Miller, H.; Bouzek, K.; Hnat, J.; Loos, S.; Immanuel Bernäcker, C.; Weißgärber, T.; Röntzsch, L.; Meier-Haack, J. Green Hydrogen from Anion Exchange Membrane Water Electrolysis: A Review of Recent Developments in Critical Materials and Operating Conditions. Sustain. Energy Fuels 2020, 4, 2114–2133, doi:10.1039/C9SE01240K.
- Henkensmeier, D.; Najibah, M.; Harms, C.; Žitka, J.; Hnát, J.; Bouzek, K. Overview: State-of-the Art Commercial Membranes for Anion Exchange Membrane Water Electrolysis. J. Electrochem. Energy Convers. Storage 2020, 18, doi:10.1115/1.4047963.
- Shiva Kumar, S.; Lim, H. An Overview of Water Electrolysis Technologies for Green Hydrogen Production. Energy Rep. 2022, 8, 13793–13813, doi:10.1016/j.egyr.2022.10.127.
- Guo, W.; Kim, J.; Kim, H.; Ahn, S.H. Cu–Co–P Electrodeposited on Carbon Paper as an Efficient Electrocatalyst for Hydrogen Evolution Reaction in Anion Exchange Membrane Water Electrolyzers. Int. J. Hydrog. Energy 2021, 46, 19789–19801, doi:10.1016/j.ijhydene.2021.03.120.
- Thangavel, P.; Kim, G.; Kim, K.S. Electrochemical Integration of Amorphous NiFe (Oxy)Hydroxides on Surface-Activated Carbon Fibers for High-Efficiency Oxygen Evolution in Alkaline Anion Exchange Membrane Water Electrolysis. J. Mater. Chem. A 2021, 9, 14043–14051, doi:10.1039/D1TA02883A.
- Chen, N.; Paek, S.Y.; Lee, J.Y.; Park, J.H.; Lee, S.Y.; Lee, Y.M. High-Performance Anion Exchange Membrane Water Electrolyzers with a Current Density of 7.68 A Cm−2 and a Durability of 1000 Hours. Energy Environ. Sci. 2021, 14, 6338–6348, doi:10.1039/D1EE02642A.
- Jang, I.; Im, K.; Shin, H.; Lee, K.-S.; Kim, H.; Kim, J.; Yoo, S.J. Electron-Deficient Titanium Single-Atom Electrocatalyst for Stable and Efficient Hydrogen Production. Nano Energy 2020, 78, 105151, doi:10.1016/j.nanoen.2020.105151.
- Xie, Z.; Yu, S.; Yang, G.; Li, K.; Ding, L.; Wang, W.; Cullen, D.A.; Meyer, H.M.; Retterer, S.T.; Wu, Z.; et al. Ultrathin Platinum Nanowire Based Electrodes for High-Efficiency Hydrogen Generation in Practical Electrolyzer Cells. Chem. Eng. J. 2021, 410, 128333, doi:10.1016/j.cej.2020.128333.
- Jiang, G.; Yu, H.; Yao, D.; Li, Y.; Chi, J.; Zhang, H.; Shao, Z. Boosting the Oxygen Evolution Stability and Activity of a Heterogeneous IrRu Bimetallic Coating on a WO3 Nano-Array Electrode for PEM Water Electrolysis. J. Mater. Chem. A 2022, 10, 11893–11903, doi:10.1039/D1TA09887J.
- Wang, S.; Lv, H.; Tang, F.; Sun, Y.; Ji, W.; Zhou, W.; Shen, X.; Zhang, C. Defect Engineering Assisted Support Effect:IrO2/N Defective g-C3N4 Composite as Highly Efficient Anode Catalyst in PEM Water Electrolysis. Chem. Eng. J. 2021, 419, 129455, doi:10.1016/j.cej.2021.129455.
- Dincer, I.; Javani, N.; Karayel, G.K. Sustainable City Concept Based on Green Hydrogen Energy. Sustain. Cities Soc. 2022, 87, 104154, doi:10.1016/j.scs.2022.104154.
- Iridium Price 2024 [Updated Daily]. Metalary.
- Sunfire, 2021a. Hylink SOEC. Germany, Https://Www.Sunfire.de/Files/Sunfire/ Images/Content/Sunfire.De%20(Neu)/Sunfire-Factsheet-HyLink-SOEC 20210303.Pdf (Accessed 13 August 2021) - Google Search Available online: https://www.google.com/search?hl=en&q=+Sunfire,+2021a.+Hylink+SOEC.+Germany,+https://www.sunfire.de/files/sunfire/++images/content/Sunfire.de%2520(neu)/Sunfire-Factsheet-HyLink-SOEC+20210303.pdf+(Accessed+13+August+2021) (accessed on 20 June 2024).
- Nuberg PERIC, 2022. Nuberg PERIC. Https://Www.Nubergindia.Com/Nuberg Hydrogen-Brochure.Pdf (Accessed 28 August 2022). - Google Search Available online: https://www.google.com/search?hl=en&q=+Nuberg+PERIC,+2022.+Nuberg+PERIC.+https://www.nubergindia.com/nuberg+hydrogen-brochure.pdf+(Accessed+28+August+2022). (accessed on 20 June 2024).
- Energies | Free Full-Text | Experimental Characterization of an Alkaline Electrolyser and a Compression System for Hydrogen Production and Storage Available online: https://www.mdpi.com/1996-1073/14/17/5347 (accessed on 20 June 2024).
- Mission Hydrogen | Free Hydrogen Knowledge Available online: https://mission-hydrogen.com/ (accessed on 20 June 2024).
- Water Electrolysers / Hydrogen Generators Available online: https://nelhydrogen.com/water-electrolysers-hydrogen-generators/ (accessed on 20 June 2024).
- Energies | Free Full-Text | Green Hydrogen: Resources Consumption, Technological Maturity, and Regulatory Framework Available online: https://www.mdpi.com/1996-1073/16/17/6222 (accessed on 20 June 2024).
- Proton Onsite, 2021. M Series Hydrogen Generation Systems. USA, Https://Www.Protononsite.Com/Sites/Default/Files/2017-04/PD-0600 0119%20REV%20A.Pdf (Accessed 13 August 2021). - Google Search Available online: https://www.google.com/search?hl=en&q=+Proton+onsite,+2021.+M+Series+Hydrogen+Generation+Systems.+USA,++https://www.protononsite.com/sites/default/files/2017-04/PD-0600+0119%2520REV%2520A.pdf+(Accessed+13+August+2021). (accessed on 20 June 2024).
- idUS - Innovative Energy Storage Concepts Based on Power-to-Power Solutions Using Micro Gas Turbines Available online: https://idus.us.es/handle/11441/155232 (accessed on 20 June 2024).
- PEM Electrolyser for Green Hydrogen | H-TEC SYSTEMS Available online: https://www.h-tec.com/en/scaling-up-green-hydrogen/?gad_source=1&gclid=CjwKCAjwps-zBhAiEiwALwsVYTDb9VSyhJ_CXfavOj1jLmVz7TSMN2GtSrh1A7q1xTaE25ZMy-CpUhoC6tcQAvD_BwE (accessed on 20 June 2024).
- Li, P.; Dong, R.; Yang, P.; Ma, X.; Yan, F.; Zhang, P.; Fu, D. Performance Enhanced of NiCe0.8Sm0.2O1.9 Hydrogen Electrode for Reversible Solid Oxide Cells with Cadmium Substitution. J. Electroanal. Chem. 2021, 882, 115018, doi:10.1016/j.jelechem.2021.115018.
- Kim, Y.-D.; Yang, J.-Y.; Saqib, M.; Park, K.; Shin, J.; Jo, M.; Park, K.M.; Lim, H.-T.; Song, S.-J.; Park, J.-Y. Cobalt-Free Perovskite Ba1-xNdxFeO3-δ Air Electrode Materials for Reversible Solid Oxide Cells. Ceram. Int. 2021, 47, 7985–7993, doi:10.1016/j.ceramint.2020.11.149.
- Kim, J.; Jun, A.; Gwon, O.; Yoo, S.; Liu, M.; Shin, J.; Lim, T.-H.; Kim, G. Hybrid-Solid Oxide Electrolysis Cell: A New Strategy for Efficient Hydrogen Production. Nano Energy 2018, 44, 121–126, doi:10.1016/j.nanoen.2017.11.074.
- Review of Ammonia Production and Utilization: Enabling Clean Energy Transition and Net-Zero Climate Targets - ScienceDirect Available online: https://www.sciencedirect.com/science/article/abs/pii/S0196890423012153 (accessed on 20 June 2024).
- Frigo, S.; Flori, G.; Barontini, F.; Gabbrielli, R.; Sica, P. Experimental and Numerical Performance Assessment of Green-Hydrogen Production from Biomass Oxy-Steam Gasification. Int. J. Hydrog. Energy 2024, 71, 785–796, doi:10.1016/j.ijhydene.2024.05.306.
- Gautam, R.; Nayak, J.K.; Ress, N.V.; Steinberger-Wilckens, R.; Ghosh, U.K. Bio-Hydrogen Production through Microbial Electrolysis Cell: Structural Components and Influencing Factors. Chem. Eng. J. 2023, 455, 140535, doi:10.1016/j.cej.2022.140535.
- Kim, S.-H.; Kumar, G.; Chen, W.-H.; Khanal, S.K. Renewable Hydrogen Production from Biomass and Wastes (ReBioH2-2020). Bioresour. Technol. 2021, 331, 125024, doi:10.1016/j.biortech.2021.125024.
- Buffi, M.; Prussi, M.; Scarlat, N. Energy and Environmental Assessment of Hydrogen from Biomass Sources: Challenges and Perspectives. Biomass Bioenergy 2022, 165, 106556, doi:10.1016/j.biombioe.2022.106556.
- Lanjekar, P.R.; Panwar, N.L.; Agrawal, C. A Comprehensive Review on Hydrogen Production through Thermochemical Conversion of Biomass for Energy Security. Bioresour. Technol. Rep. 2023, 21, 101293, doi:10.1016/j.biteb.2022.101293.
- Taipabu, M.I.; Viswanathan, K.; Wu, W.; Hattu, N.; Atabani, A.E. A Critical Review of the Hydrogen Production from Biomass-Based Feedstocks: Challenge, Solution, and Future Prospect. Process Saf. Environ. Prot. 2022, 164, 384–407, doi:10.1016/j.psep.2022.06.006.
- Lepage, T.; Kammoun, M.; Schmetz, Q.; Richel, A. Biomass-to-Hydrogen: A Review of Main Routes Production, Processes Evaluation and Techno-Economical Assessment. Biomass Bioenergy 2021, 144, 105920, doi:10.1016/j.biombioe.2020.105920.
- Ma, Z.; Zhang, S.; Xie, D.; Yan, Y. A Novel Integrated Process for Hydrogen Production from Biomass. Int. J. Hydrog. Energy 2014, 39, 1274–1279, doi:10.1016/j.ijhydene.2013.10.146.
- Pandey, B.; Prajapati, Y.K.; Sheth, P.N. Recent Progress in Thermochemical Techniques to Produce Hydrogen Gas from Biomass: A State of the Art Review. Int. J. Hydrog. Energy 2019, 44, 25384–25415, doi:10.1016/j.ijhydene.2019.08.031.
- Shayan, E.; Zare, V.; Mirzaee, I. Hydrogen Production from Biomass Gasification; a Theoretical Comparison of Using Different Gasification Agents. Energy Convers. Manag. 2018, 159, 30–41, doi:10.1016/j.enconman.2017.12.096.
- Guo, J.-X.; Tan, X.; Zhu, K.; Gu, B. Integrated Management of Mixed Biomass for Hydrogen Production from Gasification. Chem. Eng. Res. Des. 2022, 179, 41–55, doi:10.1016/j.cherd.2022.01.012.
- Brito, J.; Pinto, F.; Ferreira, A.; Soria, M.A.; Madeira, L.M. Steam Reforming of Biomass Gasification Gas for Hydrogen Production: From Thermodynamic Analysis to Experimental Validation. Fuel Process. Technol. 2023, 250, 107859, doi:10.1016/j.fuproc.2023.107859.
- Nguyen, V.G.; Nguyen-Thi, T.X.; Phong Nguyen, P.Q.; Tran, V.D.; Ağbulut, Ü.; Nguyen, L.H.; Balasubramanian, D.; Tarelko, W.; A. Bandh, S.; Khoa Pham, N.D. Recent Advances in Hydrogen Production from Biomass Waste with a Focus on Pyrolysis and Gasification. Int. J. Hydrog. Energy 2024, 54, 127–160, doi:10.1016/j.ijhydene.2023.05.049.
- Flori, G.; Frigo, S.; Barontini, F.; Gabbrielli, R.; Sica, P. Experimental Assessment of Oxy-CO2 Gasification Strategy with Woody Biomass. Renew. Energy 2024, 228, 120593, doi:10.1016/j.renene.2024.120593.
- Tar_measurement_in_biomass_gasification_20160204-30232-Yp0j61-Libre.Pdf.
- Hoang, A.T.; Huang, Z.; Nižetić, S.; Pandey, A.; Nguyen, X.P.; Luque, R.; Ong, H.C.; Said, Z.; Le, T.H.; Pham, V.V. Characteristics of Hydrogen Production from Steam Gasification of Plant-Originated Lignocellulosic Biomass and Its Prospects in Vietnam. Int. J. Hydrog. Energy 2022, 47, 4394–4425, doi:10.1016/j.ijhydene.2021.11.091.
- A Review on Photocatalytic Water Splitting | E3S Web of Conferences Available online: https://www.e3s-conferences.org/articles/e3sconf/abs/2021/85/e3sconf_icmed2021_01032/e3sconf_icmed2021_01032.html (accessed on 20 June 2024).
- Mohammed, Y.; Hafeez, H.Y.; Mohammed, J.; Suleiman, A.B.; Ndikilar, C.E.; Idris, M.G. Hydrogen Production via Photocatalytic Water Splitting Using Spinel Ferrite-Based Photocatalysts: Recent and Future Perspectives. Energy 2024, 4, 100145, doi:10.1016/j.nxener.2024.100145.
- McConnachie, M.; Konarova, M.; Smart, S. Literature Review of the Catalytic Pyrolysis of Methane for Hydrogen and Carbon Production. Int. J. Hydrog. Energy 2023, 48, 25660–25682, doi:10.1016/j.ijhydene.2023.03.123.
- Guéret, C.; Daroux, M.; Billaud, F. Methane Pyrolysis: Thermodynamics. Chem. Eng. Sci. 1997, 52, 815–827, doi:10.1016/S0009-2509(96)00444-7.
- Abánades, A.; Ruiz, E.; Ferruelo, E.M.; Hernández, F.; Cabanillas, A.; Martínez-Val, J.M.; Rubio, J.A.; López, C.; Gavela, R.; Barrera, G.; et al. Experimental Analysis of Direct Thermal Methane Cracking. Int. J. Hydrog. Energy 2011, 36, 12877–12886, doi:10.1016/j.ijhydene.2011.07.081.
- Mechanism Generation with Integrated Pressure Dependence: A New Model for Methane Pyrolysis | The Journal of Physical Chemistry A Available online: https://pubs.acs.org/doi/abs/10.1021/jp0345957 (accessed on 20 June 2024).
- Ostadi, M.; Hillestad, M. Renewable-Power-Assisted Production of Hydrogen and Liquid Hydrocarbons from Natural Gas: Techno-Economic Analysis. Sustain. Energy Fuels 2022, 6, 3402–3415, doi:10.1039/D2SE00509C.
- Renewable Hydrogen Production from Biogas by Sorption Enhanced Steam Reforming (SESR): A Parametric Study | DIGITAL.CSIC Available online: https://digital.csic.es/handle/10261/225127 (accessed on 20 June 2024).
- Luo, J.; Zhuo, W.; Liu, S.; Xu, B. The Optimization of Carbon Emission Prediction in Low Carbon Energy Economy Under Big Data. IEEE Access 2024, 12, 14690–14702, doi:10.1109/ACCESS.2024.3351468.
- Energies | Free Full-Text | A Brief Review of Hydrogen Production Methods and Their Challenges Available online: https://www.mdpi.com/1996-1073/16/3/1141 (accessed on 20 June 2024).
- María Villarreal Vives, A.; Wang, R.; Roy, S.; Smallbone, A. Techno-Economic Analysis of Large-Scale Green Hydrogen Production and Storage. Appl. Energy 2023, 346, 121333, doi:10.1016/j.apenergy.2023.121333.
- Shahbaz, M.; Taqvi, S.A.; Minh Loy, A.C.; Inayat, A.; Uddin, F.; Bokhari, A.; Naqvi, S.R. Artificial Neural Network Approach for the Steam Gasification of Palm Oil Waste Using Bottom Ash and CaO. Renew. Energy 2019, 132, 243–254, doi:10.1016/j.renene.2018.07.142.
- Dokhani, S.; Assadi, M.; Pollet, B.G. Techno-Economic Assessment of Hydrogen Production from Seawater. Int. J. Hydrog. Energy 2023, 48, 9592–9608, doi:10.1016/j.ijhydene.2022.11.200.
- Processes | Free Full-Text | Technoeconomic Analysis for Green Hydrogen in Terms of Production, Compression, Transportation and Storage Considering the Australian Perspective Available online: https://www.mdpi.com/2227-9717/11/7/2196 (accessed on 21 June 2024).
- Bourne, S. The Future of Fuel: The Future of Hydrogen. Fuel Cells Bull. 2012, 2012, 12–15, doi:10.1016/S1464-2859(12)70027-5.
- Wang, R.; Zhang, R. Techno-Economic Analysis and Optimization of Hybrid Energy Systems Based on Hydrogen Storage for Sustainable Energy Utilization by a Biological-Inspired Optimization Algorithm. J. Energy Storage 2023, 66, 107469, doi:10.1016/j.est.2023.107469.
- Kakavand, A.; Sayadi, S.; Tsatsaronis, G.; Behbahaninia, A. Techno-Economic Assessment of Green Hydrogen and Ammonia Production from Wind and Solar Energy in Iran. Int. J. Hydrog. Energy 2023, 48, 14170–14191, doi:10.1016/j.ijhydene.2022.12.285.
- Cook, B.; Hagen, C. Techno-Economic Analysis of Biomass Gasification for Hydrogen Production in Three US-Based Case Studies. Int. J. Hydrog. Energy 2024, 49, 202–218, doi:10.1016/j.ijhydene.2023.07.219.
- Nouwe Edou, D.J.; Onwudili, J.A. Comparative Techno-Economic Modelling of Large-Scale Thermochemical Biohydrogen Production Technologies to Fuel Public Buses: A Case Study of West Midlands Region of England. Renew. Energy 2022, 189, 704–716, doi:10.1016/j.renene.2022.02.074.
- Castro, J.; Leaver, J.; Pang, S. Simulation and Techno-Economic Assessment of Hydrogen Production from Biomass Gasification-Based Processes: A Review. Energies 2022, 15, 8455, doi:10.3390/en15228455.
- Abbas, M.K.; Hassan, Q.; Tabar, V.S.; Tohidi, S.; Jaszczur, M.; Abdulrahman, I.S.; Salman, H.M. Techno-Economic Analysis for Clean Hydrogen Production Using Solar Energy under Varied Climate Conditions. Int. J. Hydrog. Energy 2023, 48, 2929–2948, doi:10.1016/j.ijhydene.2022.10.073.
- Onigbajumo, A.; Swarnkar, P.; Will, G.; Sundararajan, T.; Taghipour, A.; Couperthwaite, S.; Steinberg, T.; Rainey, T. Techno-Economic Evaluation of Solar-Driven Ceria Thermochemical Water-Splitting for Hydrogen Production in a Fluidized Bed Reactor. J. Clean. Prod. 2022, 371, 133303, doi:10.1016/j.jclepro.2022.133303.
- Skordoulias, N.; Koytsoumpa, E.I.; Karellas, S. Techno-Economic Evaluation of Medium Scale Power to Hydrogen to Combined Heat and Power Generation Systems. Int. J. Hydrog. Energy 2022, 47, 26871–26890, doi:10.1016/j.ijhydene.2022.06.057.
- Ghorbani, B.; Zendehboudi, S.; Zhang, Y.; Zarrin, H.; Chatzis, I. Thermochemical Water-Splitting Structures for Hydrogen Production: Thermodynamic, Economic, and Environmental Impacts. Energy Convers. Manag. 2023, 297, 117599, doi:10.1016/j.enconman.2023.117599.
- Mehrpooya, M.; Ghorbani, B.; Khodaverdi, M. Hydrogen Production by Thermochemical Water Splitting Cycle Using Low-Grade Solar Heat and Phase Change Material Energy Storage System. Int. J. Energy Res. 2022, 46, 7590–7609, doi:10.1002/er.7662.
- Shi, W.; Zhang, R.; Li, H.; Wu, Y.; Toan, S.; Sun, Z.; Sun, Z. Modulating Mxene-Derived Ni-Mom-Mo2-mTiC2Tx Structure for Intensified Low-Temperature Ethanol Reforming. Adv. Energy Mater. 2023, 13, 2301920, doi:10.1002/aenm.202301920.
- Capurso, T.; Stefanizzi, M.; Torresi, M.; Camporeale, S.M. Perspective of the Role of Hydrogen in the 21st Century Energy Transition. Energy Convers. Manag. 2022, 251, 114898, doi:10.1016/j.enconman.2021.114898.
- Bhandari, R.; Trudewind, C.A.; Zapp, P. Life Cycle Assessment of Hydrogen Production via Electrolysis – a Review. J. Clean. Prod. 2014, 85, 151–163, doi:10.1016/j.jclepro.2013.07.048.
- Gaikwad, P.S.; Mondal, K.; Shin, Y.K.; van Duin, A.C.T.; Pawar, G. Enhancing the Faradaic Efficiency of Solid Oxide Electrolysis Cells: Progress and Perspective. Npj Comput. Mater. 2023, 9, 1–14, doi:10.1038/s41524-023-01044-1.
- Brynolf, S.; Taljegard, M.; Grahn, M.; Hansson, J. Electrofuels for the Transport Sector: A Review of Production Costs. Renew. Sustain. Energy Rev. 2018, 81, 1887–1905, doi:10.1016/j.rser.2017.05.288.
- Das, G.; Choi, J.-H.; Nguyen, P.K.T.; Kim, D.-J.; Yoon, Y.S. Anion Exchange Membranes for Fuel Cell Application: A Review. Polymers 2022, 14, 1197, doi:10.3390/polym14061197.
- Tschörtner, J.; Lai, B.; Krömer, J.O. Biophotovoltaics: Green Power Generation From Sunlight and Water. Front. Microbiol. 2019, 10, doi:10.3389/fmicb.2019.00866.
- Pandiyan, A.; Uthayakumar, A.; Subrayan, R.; Cha, S.W.; Krishna Moorthy, S.B. Review of Solid Oxide Electrolysis Cells: A Clean Energy Strategy for Hydrogen Generation. Nanomater. Energy 2019, 8, 2–22, doi:10.1680/jnaen.18.00009.
- Emerging Technologies, Markets and Commercialization of Solid‐electrolytic Hydrogen Production - Badwal - 2018 - WIREs Energy and Environment - Wiley Online Library Available online: https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wene.286 (accessed on 21 June 2024).
- International Energy Agency. The Future of Hydrogen. 2019. - Google Search Available online: https://www.google.com/search?q=International+Energy+Agency.+The+future+of+hydrogen.+2019.&oq=International+Energy+Agency.+The+future+of+hydrogen.+2019.&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTIICAEQABgWGB4yCwgCEAAYFhgeGIsDMgsIAxAAGBYYHhiLAzINCAQQABiGAxiABBiKBTINCAUQABiGAxiABBiKBTINCAYQABiGAxiABBiKBTIKCAcQABiABBiiBDIKCAgQABiABBiiBNIBCDI3ODlqMWo3qAIIsAIB&sourceid=chrome&ie=UTF-8 (accessed on 21 June 2024).
- Mehanovic, D.; Al-Haiek, A.; Leclerc, P.; Rancourt, D.; Fréchette, L.; Picard, M. Energetic, GHG, and Economic Analyses of Electrified Steam Methane Reforming Using Conventional Reformer Tubes. Energy Convers. Manag. 2023, 276, 116549, doi:10.1016/j.enconman.2022.116549.
- Pan, Z.F.; An, L.; Zhao, T.S.; Tang, Z.K. Advances and Challenges in Alkaline Anion Exchange Membrane Fuel Cells. Prog. Energy Combust. Sci. 2018, 66, 141–175, doi:10.1016/j.pecs.2018.01.001.
- Polymers | Free Full-Text | Anion Exchange Membranes for Fuel Cell Application: A Review Available online: https://www.mdpi.com/2073-4360/14/6/1197 (accessed on 21 June 2024).
- A Roadmap to Low‐Cost Hydrogen with Hydroxide Exchange Membrane Electrolyzers - Abbasi - 2019 - Advanced Materials - Wiley Online Library Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201805876 (accessed on 21 June 2024).
- Liu, J.; Weber, A.Z. Ionomer Optimization for Hydroxide-Exchange-Membrane Water Electrolyzers Operated with Distilled Water: A Modeling Study. J. Electrochem. Soc. 2022, 169, 054506, doi:10.1149/1945-7111/ac69c4.
- Kiessling, A.; Fornaciari, J.C.; Anderson, G.; Peng, X.; Gerstmayr, A.; Gerhardt, M.R.; McKinney, S.; Serov, A.; Kim, Y.S.; Zulevi, B.; et al. Influence of Supporting Electrolyte on Hydroxide Exchange Membrane Water Electrolysis Performance: Anolyte. J. Electrochem. Soc. 2021, 168, 084512, doi:10.1149/1945-7111/ac1dcd.
- In Situ Photodeposition of Platinum Clusters on a Covalent Organic Framework for Photocatalytic Hydrogen Production | Nature Communications Available online: https://www.nature.com/articles/s41467-022-29076-z (accessed on 21 June 2024).
- J. McCormick, A.; Bombelli, P.; J. Lea-Smith, D.; W. Bradley, R.; M. Scott, A.; C. Fisher, A.; G. Smith, A.; J. Howe, C. Hydrogen Production through Oxygenic Photosynthesis Using the Cyanobacterium Synechocystis Sp. PCC 6803 in a Bio-Photoelectrolysis Cell (BPE) System. Energy Environ. Sci. 2013, 6, 2682–2690, doi:10.1039/C3EE40491A.
- Anam, M.; I. Gomes, H.; Rivers, G.; L. Gomes, R.; Wildman, R. Evaluation of Photoanode Materials Used in Biophotovoltaic Systems for Renewable Energy Generation. Sustain. Energy Fuels 2021, 5, 4209–4232, doi:10.1039/D1SE00396H.
- Zhu, H.; Meng, H.; Zhang, W.; Gao, H.; Zhou, J.; Zhang, Y.; Li, Y. Development of a Longevous Two-Species Biophotovoltaics with Constrained Electron Flow. Nat. Commun. 2019, 10, 4282, doi:10.1038/s41467-019-12190-w.
- Esposito, D.V. Membraneless Electrolyzers for Low-Cost Hydrogen Production in a Renewable Energy Future. Joule 2017, 1, 651–658, doi:10.1016/j.joule.2017.07.003.
- Decoupled Redox Catalytic Hydrogen Production with a Robust Electrolyte-Borne Electron and Proton Carrier | Journal of the American Chemical Society Available online: https://pubs.acs.org/doi/abs/10.1021/jacs.0c09510 (accessed on 21 June 2024).
- Zhang, F.; Wang, Q. Redox-Mediated Water Splitting for Decoupled H2 Production. ACS Mater. Lett. 2021, 3, 641–651, doi:10.1021/acsmaterialslett.1c00074.
- Zainal, B.S.; Ker, P.J.; Mohamed, H.; Ong, H.C.; Fattah, I.M.R.; Rahman, S.M.A.; Nghiem, L.D.; Mahlia, T.M.I. Recent Advancement and Assessment of Green Hydrogen Production Technologies. Renew. Sustain. Energy Rev. 2024, 189, 113941, doi:10.1016/j.rser.2023.113941.
- IAEE Online Conference Proceedings.
- Glenk, G.; Reichelstein, S. Economics of Converting Renewable Power to Hydrogen. Nat. Energy 2019, 4, 216–222, doi:10.1038/s41560-019-0326-1.
- Barghash, H.; Al Farsi, A.; Okedu, K.E.; Al-Wahaibi, B.M. Cost Benefit Analysis for Green Hydrogen Production from Treated Effluent: The Case Study of Oman. Front. Bioeng. Biotechnol. 2022, 10, doi:10.3389/fbioe.2022.1046556.
- Rume, E. For Further Information, Sponsorship or Delegate Registration Please Contact: 2023.
- New Roads and Challenges for Fuel Cells in Heavy-Duty Transportation | Nature Energy Available online: https://www.nature.com/articles/s41560-021-00775-z (accessed on 21 June 2024).
- Mesd-Afis-Report-140420-Spreads-Low-Res.Pdf.
- The National Hydrogen Strategy. 2020. Berlin, Https://Www.Energy Partnership. Cl/Newsroom/Hydrogen/#:~:text=In%20order%20to%20promote%20the,Offsh Ore%20and%20 Onshore%20 Infrastructure%20needed. - Google Search Available online: https://www.google.com/search?hl=en&q=The+national+hydrogen+strategy.+2020.+Berlin,+https://www.energy+partnership.+cl/newsroom/hydrogen/%23:~:text%3DIn%2520order%2520to%2520promote%2520the,offsh+ore%2520and%2520+onshore%2520+infrastructure%2520needed. (accessed on 21 June 2024).
- Ally, J.; Pryor, T.; Pigneri, A. The Role of Hydrogen in Australia’s Transport Energy Mix. Int. J. Hydrog. Energy 2015, 40, 4426–4441, doi:10.1016/j.ijhydene.2015.02.022.
- Mansilla, C.; Avril, S.; Imbach, J.; Le Duigou, A. CO2-Free Hydrogen as a Substitute to Fossil Fuels: What Are the Targets? Prospective Assessment of the Hydrogen Market Attractiveness. Int. J. Hydrog. Energy 2012, 37, 9451–9458, doi:10.1016/j.ijhydene.2012.03.149.
- Energies | Free Full-Text | Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications; Challenges and Expected Opportunities Available online: https://www.mdpi.com/1996-1073/15/13/4741 (accessed on 21 June 2024).
- Uyar, T.S.; Javani, N. Renewable Energy Based Solutions; Springer Nature, 2022; ISBN 978-3-031-05125-8.
- Hannan, M.A.; Abu, S.M.; Al-Shetwi, A.Q.; Mansor, M.; Ansari, M.N.M.; Muttaqi, K.M.; Dong, Z.Y. Hydrogen Energy Storage Integrated Battery and Supercapacitor Based Hybrid Power System: A Statistical Analysis towards Future Research Directions. Int. J. Hydrog. Energy 2022, 47, 39523–39548, doi:10.1016/j.ijhydene.2022.09.099.
- Awad, M.; Said, A.; Saad, M.H.; Farouk, A.; Mahmoud, M.M.; Alshammari, M.S.; Alghaythi, M.L.; Abdel Aleem, S.H.E.; Abdelaziz, A.Y.; Omar, A.I. A Review of Water Electrolysis for Green Hydrogen Generation Considering PV/Wind/Hybrid/Hydropower/Geothermal/Tidal and Wave/Biogas Energy Systems, Economic Analysis, and Its Application. Alex. Eng. J. 2024, 87, 213–239, doi:10.1016/j.aej.2023.12.032.
- L.S. Jose, B.L. Bollini, M.E. Da SIlva, T.S. Colombaroli, C.E. Tuna, F.H.M. de Araujo, L.F. Vane, D.T. Pedroso, L.C.F.T. Tapia, R.Z. Virgoux, Sustain. Hydrog. Prod. Process. 183 (2017), Https://Doi.Org/10.1007/978-3-319-41616-8. - Google Search Available online: https://www.google.com/search?hl=en&q=L.S.+Jose,+B.L.+Bollini,+M.E.+da+SIlva,+T.S.+Colombaroli,+C.E.+Tuna,+F.H.M.+de++Araujo,+L.F.+Vane,+D.T.+Pedroso,+L.C.F.T.+Tapia,+R.Z.+Virgoux,+Sustain.+Hydrog.++Prod.+Process.+183+(2017),+https://doi.org/10.1007/978-3-319-41616-8.+ (accessed on 21 June 2024).
- Analysis, Modeling and Control of a Non-Grid-Connected Source-Load Collaboration Wind-Hydrogen System | Journal of Electrical Engineering & Technology Available online: https://link.springer.com/article/10.1007/s42835-021-00774-w (accessed on 22 June 2024).
- Fang, R.; Liang, Y. Control Strategy of Electrolyzer in a Wind-Hydrogen System Considering the Constraints of Switching Times. Int. J. Hydrog. Energy 2019, 44, 25104–25111, doi:10.1016/j.ijhydene.2019.03.033.
- Privitera, S.M.S.; Muller, M.; Zwaygardt, W.; Carmo, M.; Milazzo, R.G.; Zani, P.; Leonardi, M.; Maita, F.; Canino, A.; Foti, M.; et al. Highly Efficient Solar Hydrogen Production through the Use of Bifacial Photovoltaics and Membrane Electrolysis. J. Power Sources 2020, 473, 228619, doi:10.1016/j.jpowsour.2020.228619.
- Awad, M.; Ibrahim, A.M.; Alaas, Z.M.; El-Shahat, A.; Omar, A.I. Design and Analysis of an Efficient Photovoltaic Energy-Powered Electric Vehicle Charging Station Using Perturb and Observe MPPT Algorithm. Front. Energy Res. 2022, 10, doi:10.3389/fenrg.2022.969482.
- Can Africa Clean up with Green Hydrogen? Control Risks. 2022. Https://Www.Con Trolrisks.Com/Our-Thinking/Insights/Can-Africa-Clean-up-with-Green-Hydrogen. [Accessed 5 February 2023]. - Google Search Available online: https://www.google.com/search?hl=en&q=Can+Africa+clean+up+with+green+hydrogen%3F+Control+Risks.+2022.+https://www.con+trolrisks.com/our-thinking/insights/can-africa-clean-up-with-green-hydrogen.+%5BAccessed+5+February+2023%5D. (accessed on 22 June 2024).
- Energies | Free Full-Text | The Potential of Collaboration between India and Japan in the Hydrogen Sector Available online: https://www.mdpi.com/1996-1073/16/8/3596 (accessed on 22 June 2024).
- Yang, H.; Xu, S.; Gao, W.; Wang, Y.; Li, Y.; Wei, X. Mitigating Long-Term Financial Risk for Large Customers via a Hybrid Procurement Strategy Considering Power Purchase Agreements. Energy 2024, 295, 131038, doi:10.1016/j.energy.2024.131038.
- Islam, A.; Islam, T.; Mahmud, H.; Raihan, O.; Islam, Md.S.; Marwani, H.M.; Rahman, M.M.; Asiri, A.M.; Hasan, Md.M.; Hasan, Md.N.; et al. Accelerating the Green Hydrogen Revolution: A Comprehensive Analysis of Technological Advancements and Policy Interventions. Int. J. Hydrog. Energy 2024, 67, 458–486, doi:10.1016/j.ijhydene.2024.04.142.
- Quitzow, R.; Nunez, A.; Marian, A. Positioning Germany in an International Hydrogen Economy: A Policy Review. Energy Strategy Rev. 2024, 53, 101361, doi:10.1016/j.esr.2024.101361.
- Xinhua. China Maps 2021-2035 Plan on Hydrogen Energy Development. National Development and Reform Commission (NDRC); 2022. Https://En.Ndrc.Gov.Cn/n Ews/Press Releases/202203/T20220329_1321487.Html. [Accessed 19 January 2023]. - Google Search Available online: https://www.google.com/search?hl=en&q=Xinhua.+China+maps+2021-2035+plan+on+hydrogen+energy+development.+National+Development+and+Reform+Commission+(NDRC)%3B+2022.+https://en.ndrc.gov.cn/n+ews/press+releases/202203/t20220329_1321487.html.+%5BAccessed+19+January+2023%5D. (accessed on 22 June 2024).
- Secretary of State for Business E& IS. UK Hydrogen Strategy. 2021. [222] Department for Business E and IS. Hydrogen Strategy Update to the Market: July 2022. Depart Bus Energy Industrial Strategy 2022:1–30. - Google Search Available online: https://www.google.com/search?hl=en&q=Secretary+of+State+for+Business+E%26+IS.+UK+hydrogen+strategy.+2021.+%5B222%5D+Department+for+Business+E+and+IS.+Hydrogen+strategy+update+to+the+market:+july+2022.+Depart+Bus+Energy+Industrial+Strategy+2022:1%E2%80%9330. (accessed on 22 June 2024).
References
Davidson, D.J. Exnovating for a Renewable Energy Transition. Nat. Energy 2019, 4, 254–256, doi:10.1038/s41560-019-0369-3.
Salehabadi, A.; Ahmad, M.I.; Ismail, N.; Morad, N.; Enhessari, M. Overview of Energy. In Energy, Society and the Environment: Solid-State Hydrogen Storage Materials; Salehabadi, A., Ahmad, M.I., Ismail, N., Morad, N., Enhessari, M., Eds.; Springer: Singapore, 2020; pp. 9–26 ISBN 9789811549069.
Zhang, B.; Seddon, D. Hydroprocessing Catalysts And Processes: The Challenges For Biofuels Production; World Scientific, 2018; ISBN 978-1-78634-485-4.
He, F.; Li, F. Hydrogen Production from Methane and Solar Energy – Process Evaluations and Comparison Studies. Int. J. Hydrog. Energy 2014, 39, 18092–18102, doi:10.1016/j.ijhydene.2014.05.089.
The Hydrogen Economy | SpringerLink Available online: https://link.springer.com/chapter/10.1007/978-1-84882-511-6_8 (accessed on 14 June 2024).
Demirbas, A. Biofuels Sources, Biofuel Policy, Biofuel Economy and Global Biofuel Projections. Energy Convers. Manag. 2008, 49, 2106–2116, doi:10.1016/j.enconman.2008.02.020.
Agrafiotis, C.; Roeb, M.; Sattler, C. A Review on Solar Thermal Syngas Production via Redox Pair-Based Water/Carbon Dioxide Splitting Thermochemical Cycles. Renew. Sustain. Energy Rev. 2015, 42, 254–285, doi:10.1016/j.rser.2014.09.039.
Ismail, A.A.; Bahnemann, D.W. Photochemical Splitting of Water for Hydrogen Production by Photocatalysis: A Review. Sol. Energy Mater. Sol. Cells 2014, 128, 85–101, doi:10.1016/j.solmat.2014.04.037.
Steinfeld, A. Solar Thermochemical Production of Hydrogen––a Review. Sol. Energy 2005, 78, 603–615, doi:10.1016/j.solener.2003.12.012.
Colón, G. Towards the Hydrogen Production by Photocatalysis. Appl. Catal. Gen. 2016, 518, 48–59, doi:10.1016/j.apcata.2015.11.042.
Veeramani, K.; Janani, G.; Kim, J.; Surendran, S.; Lim, J.; Jesudass, S.C.; Mahadik, S.; lee, H.; Kim, T.-H.; Kim, J.K.; et al. Hydrogen and Value-Added Products Yield from Hybrid Water Electrolysis: A Critical Review on Recent Developments. Renew. Sustain. Energy Rev. 2023, 177, 113227, doi:10.1016/j.rser.2023.113227.
Nanoenhanced Materials for Photolytic Hydrogen Production - Nanotechnology for Energy Sustainability - Wiley Online Library Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527696109.ch26 (accessed on 14 June 2024).
Li, W.; Li, S.; M. Abed, A.; Ayed, H.; Khadimallah, M.A.; Deifalla, A.; Lee, V.F. Enhancing Green Hydrogen Production via Improvement of an Integrated Double Flash Geothermal Cycle; Multi-Criteria Optimization and Exergo-Environmental Evaluation. Case Stud. Therm. Eng. 2024, 59, 104538, doi:10.1016/j.csite.2024.104538.
Shiva Kumar, S.; Ramakrishna, S.U.B.; Rama Devi, B.; Himabindu, V. Phosphorus-Doped Graphene Supported Palladium (Pd/PG) Electrocatalyst for the Hydrogen Evolution Reaction in PEM Water Electrolysis. Int. J. Green Energy 2018, 15, 558–567, doi:10.1080/15435075.2018.1508468.
Yu, F.; Yu, L.; Mishra, I.K.; Yu, Y.; Ren, Z.F.; Zhou, H.Q. Recent Developments in Earth-Abundant and Non-Noble Electrocatalysts for Water Electrolysis. Mater. Today Phys. 2018, 7, 121–138, doi:10.1016/j.mtphys.2018.11.007.
Development of Water Electrolysis in the European Union | Hydrogen Knowledge Centre Available online: https://www.h2knowledgecentre.com/content/researchpaper1120 (accessed on 19 June 2024).
Shiva Kumar, S.; Himabindu, V. Hydrogen Production by PEM Water Electrolysis – A Review. Mater. Sci. Energy Technol. 2019, 2, 442–454, doi:10.1016/j.mset.2019.03.002.
Kuckshinrichs, W.; Ketelaer, T.; Koj, J.C. Economic Analysis of Improved Alkaline Water Electrolysis. Front. Energy Res. 2017, 5, doi:10.3389/fenrg.2017.00001.
Grigoriev, S.A.; Fateev, V.N.; Bessarabov, D.G.; Millet, P. Current Status, Research Trends, and Challenges in Water Electrolysis Science and Technology. Int. J. Hydrog. Energy 2020, 45, 26036–26058, doi:10.1016/j.ijhydene.2020.03.109.
Phosphorus-Doped Graphene Supported Palladium (Pd/PG) Electrocatalyst for the Hydrogen Evolution Reaction in PEM Water Electrolysis: International Journal of Green Energy: Vol 15, No 10 Available online: https://www.tandfonline.com/doi/abs/10.1080/15435075.2018.1508468 (accessed on 19 June 2024).
Bertuccioli, L.; Chan, A.; Hart, D.; Lehner, F.; Madden, B.; Standen, E. Development of Water Electrolysis in the European Union. 2014.
Bianco, E.; Blanco, H. Green Hydrogen: A Guide to Policy Making. 2020.
Liu, S.; Li, B.; Mohite, S.V.; Devaraji, P.; Mao, L.; Xing, R. Ultrathin MoS2 Nanosheets in Situ Grown on Rich Defective Ni0.96S as Heterojunction Bifunctional Electrocatalysts for Alkaline Water Electrolysis. Int. J. Hydrog. Energy 2020, 45, 29929–29937, doi:10.1016/j.ijhydene.2020.08.034.
Qazi, U.Y.; Javaid, R.; Zahid, M.; Tahir, N.; Afzal, A.; Lin, X.-M. Bimetallic NiCo–NiCoO2 Nano-Heterostructures Embedded on Copper Foam as a Self-Supported Bifunctional Electrode for Water Oxidation and Hydrogen Production in Alkaline Media. Int. J. Hydrog. Energy 2021, 46, 18936–18948, doi:10.1016/j.ijhydene.2021.03.046.
Metal–Organic Framework-Derived 2D NiCoP Nanoflakes from Layered Double Hydroxide Nanosheets for Efficient Electrocatalytic Water Splitting at High Current Densities | ACS Sustainable Chemistry & Engineering Available online: https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.2c03250 (accessed on 19 June 2024).
Transition Metal/Metal Oxide Interface (Ni–Mo–O/Ni4Mo) Stabilized on N-Doped Carbon Paper for Enhanced Hydrogen Evolution Reaction in Alkaline Conditions | Industrial & Engineering Chemistry Research Available online: https://pubs.acs.org/doi/abs/10.1021/acs.iecr.1c00039 (accessed on 19 June 2024).
Lv, Z.; Ma, W.; Wang, M.; Dang, J.; Jian, K.; Liu, D.; Huang, D. Co-Constructing Interfaces of Multiheterostructure on MXene (Ti3C2Tx)-Modified 3D Self-Supporting Electrode for Ultraefficient Electrocatalytic HER in Alkaline Media. Adv. Funct. Mater. 2021, 31, 2102576, doi:10.1002/adfm.202102576.
Wang, J.; Gao, Y.; Kong, H.; Kim, J.; Choi, S.; Ciucci, F.; Hao, Y.; Yang, S.; Shao, Z.; Lim, J. Non-Precious-Metal Catalysts for Alkaline Water Electrolysis: Operando Characterizations, Theoretical Calculations, and Recent Advances. Chem. Soc. Rev. 2020, 49, 9154–9196, doi:10.1039/D0CS00575D.
Andrew Miller, H.; Bouzek, K.; Hnat, J.; Loos, S.; Immanuel Bernäcker, C.; Weißgärber, T.; Röntzsch, L.; Meier-Haack, J. Green Hydrogen from Anion Exchange Membrane Water Electrolysis: A Review of Recent Developments in Critical Materials and Operating Conditions. Sustain. Energy Fuels 2020, 4, 2114–2133, doi:10.1039/C9SE01240K.
Henkensmeier, D.; Najibah, M.; Harms, C.; Žitka, J.; Hnát, J.; Bouzek, K. Overview: State-of-the Art Commercial Membranes for Anion Exchange Membrane Water Electrolysis. J. Electrochem. Energy Convers. Storage 2020, 18, doi:10.1115/1.4047963.
Shiva Kumar, S.; Lim, H. An Overview of Water Electrolysis Technologies for Green Hydrogen Production. Energy Rep. 2022, 8, 13793–13813, doi:10.1016/j.egyr.2022.10.127.
Guo, W.; Kim, J.; Kim, H.; Ahn, S.H. Cu–Co–P Electrodeposited on Carbon Paper as an Efficient Electrocatalyst for Hydrogen Evolution Reaction in Anion Exchange Membrane Water Electrolyzers. Int. J. Hydrog. Energy 2021, 46, 19789–19801, doi:10.1016/j.ijhydene.2021.03.120.
Thangavel, P.; Kim, G.; Kim, K.S. Electrochemical Integration of Amorphous NiFe (Oxy)Hydroxides on Surface-Activated Carbon Fibers for High-Efficiency Oxygen Evolution in Alkaline Anion Exchange Membrane Water Electrolysis. J. Mater. Chem. A 2021, 9, 14043–14051, doi:10.1039/D1TA02883A.
Chen, N.; Paek, S.Y.; Lee, J.Y.; Park, J.H.; Lee, S.Y.; Lee, Y.M. High-Performance Anion Exchange Membrane Water Electrolyzers with a Current Density of 7.68 A Cm−2 and a Durability of 1000 Hours. Energy Environ. Sci. 2021, 14, 6338–6348, doi:10.1039/D1EE02642A.
Jang, I.; Im, K.; Shin, H.; Lee, K.-S.; Kim, H.; Kim, J.; Yoo, S.J. Electron-Deficient Titanium Single-Atom Electrocatalyst for Stable and Efficient Hydrogen Production. Nano Energy 2020, 78, 105151, doi:10.1016/j.nanoen.2020.105151.
Xie, Z.; Yu, S.; Yang, G.; Li, K.; Ding, L.; Wang, W.; Cullen, D.A.; Meyer, H.M.; Retterer, S.T.; Wu, Z.; et al. Ultrathin Platinum Nanowire Based Electrodes for High-Efficiency Hydrogen Generation in Practical Electrolyzer Cells. Chem. Eng. J. 2021, 410, 128333, doi:10.1016/j.cej.2020.128333.
Jiang, G.; Yu, H.; Yao, D.; Li, Y.; Chi, J.; Zhang, H.; Shao, Z. Boosting the Oxygen Evolution Stability and Activity of a Heterogeneous IrRu Bimetallic Coating on a WO3 Nano-Array Electrode for PEM Water Electrolysis. J. Mater. Chem. A 2022, 10, 11893–11903, doi:10.1039/D1TA09887J.
Wang, S.; Lv, H.; Tang, F.; Sun, Y.; Ji, W.; Zhou, W.; Shen, X.; Zhang, C. Defect Engineering Assisted Support Effect:IrO2/N Defective g-C3N4 Composite as Highly Efficient Anode Catalyst in PEM Water Electrolysis. Chem. Eng. J. 2021, 419, 129455, doi:10.1016/j.cej.2021.129455.
Dincer, I.; Javani, N.; Karayel, G.K. Sustainable City Concept Based on Green Hydrogen Energy. Sustain. Cities Soc. 2022, 87, 104154, doi:10.1016/j.scs.2022.104154.
Iridium Price 2024 [Updated Daily]. Metalary.
Sunfire, 2021a. Hylink SOEC. Germany, Https://Www.Sunfire.de/Files/Sunfire/ Images/Content/Sunfire.De%20(Neu)/Sunfire-Factsheet-HyLink-SOEC 20210303.Pdf (Accessed 13 August 2021) - Google Search Available online: https://www.google.com/search?hl=en&q=+Sunfire,+2021a.+Hylink+SOEC.+Germany,+https://www.sunfire.de/files/sunfire/++images/content/Sunfire.de%2520(neu)/Sunfire-Factsheet-HyLink-SOEC+20210303.pdf+(Accessed+13+August+2021) (accessed on 20 June 2024).
Nuberg PERIC, 2022. Nuberg PERIC. Https://Www.Nubergindia.Com/Nuberg Hydrogen-Brochure.Pdf (Accessed 28 August 2022). - Google Search Available online: https://www.google.com/search?hl=en&q=+Nuberg+PERIC,+2022.+Nuberg+PERIC.+https://www.nubergindia.com/nuberg+hydrogen-brochure.pdf+(Accessed+28+August+2022). (accessed on 20 June 2024).
Energies | Free Full-Text | Experimental Characterization of an Alkaline Electrolyser and a Compression System for Hydrogen Production and Storage Available online: https://www.mdpi.com/1996-1073/14/17/5347 (accessed on 20 June 2024).
Mission Hydrogen | Free Hydrogen Knowledge Available online: https://mission-hydrogen.com/ (accessed on 20 June 2024).
Water Electrolysers / Hydrogen Generators Available online: https://nelhydrogen.com/water-electrolysers-hydrogen-generators/ (accessed on 20 June 2024).
Energies | Free Full-Text | Green Hydrogen: Resources Consumption, Technological Maturity, and Regulatory Framework Available online: https://www.mdpi.com/1996-1073/16/17/6222 (accessed on 20 June 2024).
Proton Onsite, 2021. M Series Hydrogen Generation Systems. USA, Https://Www.Protononsite.Com/Sites/Default/Files/2017-04/PD-0600 0119%20REV%20A.Pdf (Accessed 13 August 2021). - Google Search Available online: https://www.google.com/search?hl=en&q=+Proton+onsite,+2021.+M+Series+Hydrogen+Generation+Systems.+USA,++https://www.protononsite.com/sites/default/files/2017-04/PD-0600+0119%2520REV%2520A.pdf+(Accessed+13+August+2021). (accessed on 20 June 2024).
idUS - Innovative Energy Storage Concepts Based on Power-to-Power Solutions Using Micro Gas Turbines Available online: https://idus.us.es/handle/11441/155232 (accessed on 20 June 2024).
PEM Electrolyser for Green Hydrogen | H-TEC SYSTEMS Available online: https://www.h-tec.com/en/scaling-up-green-hydrogen/?gad_source=1&gclid=CjwKCAjwps-zBhAiEiwALwsVYTDb9VSyhJ_CXfavOj1jLmVz7TSMN2GtSrh1A7q1xTaE25ZMy-CpUhoC6tcQAvD_BwE (accessed on 20 June 2024).
Li, P.; Dong, R.; Yang, P.; Ma, X.; Yan, F.; Zhang, P.; Fu, D. Performance Enhanced of NiCe0.8Sm0.2O1.9 Hydrogen Electrode for Reversible Solid Oxide Cells with Cadmium Substitution. J. Electroanal. Chem. 2021, 882, 115018, doi:10.1016/j.jelechem.2021.115018.
Kim, Y.-D.; Yang, J.-Y.; Saqib, M.; Park, K.; Shin, J.; Jo, M.; Park, K.M.; Lim, H.-T.; Song, S.-J.; Park, J.-Y. Cobalt-Free Perovskite Ba1-xNdxFeO3-δ Air Electrode Materials for Reversible Solid Oxide Cells. Ceram. Int. 2021, 47, 7985–7993, doi:10.1016/j.ceramint.2020.11.149.
Kim, J.; Jun, A.; Gwon, O.; Yoo, S.; Liu, M.; Shin, J.; Lim, T.-H.; Kim, G. Hybrid-Solid Oxide Electrolysis Cell: A New Strategy for Efficient Hydrogen Production. Nano Energy 2018, 44, 121–126, doi:10.1016/j.nanoen.2017.11.074.
Review of Ammonia Production and Utilization: Enabling Clean Energy Transition and Net-Zero Climate Targets - ScienceDirect Available online: https://www.sciencedirect.com/science/article/abs/pii/S0196890423012153 (accessed on 20 June 2024).
Frigo, S.; Flori, G.; Barontini, F.; Gabbrielli, R.; Sica, P. Experimental and Numerical Performance Assessment of Green-Hydrogen Production from Biomass Oxy-Steam Gasification. Int. J. Hydrog. Energy 2024, 71, 785–796, doi:10.1016/j.ijhydene.2024.05.306.
Gautam, R.; Nayak, J.K.; Ress, N.V.; Steinberger-Wilckens, R.; Ghosh, U.K. Bio-Hydrogen Production through Microbial Electrolysis Cell: Structural Components and Influencing Factors. Chem. Eng. J. 2023, 455, 140535, doi:10.1016/j.cej.2022.140535.
Kim, S.-H.; Kumar, G.; Chen, W.-H.; Khanal, S.K. Renewable Hydrogen Production from Biomass and Wastes (ReBioH2-2020). Bioresour. Technol. 2021, 331, 125024, doi:10.1016/j.biortech.2021.125024.
Buffi, M.; Prussi, M.; Scarlat, N. Energy and Environmental Assessment of Hydrogen from Biomass Sources: Challenges and Perspectives. Biomass Bioenergy 2022, 165, 106556, doi:10.1016/j.biombioe.2022.106556.
Lanjekar, P.R.; Panwar, N.L.; Agrawal, C. A Comprehensive Review on Hydrogen Production through Thermochemical Conversion of Biomass for Energy Security. Bioresour. Technol. Rep. 2023, 21, 101293, doi:10.1016/j.biteb.2022.101293.
Taipabu, M.I.; Viswanathan, K.; Wu, W.; Hattu, N.; Atabani, A.E. A Critical Review of the Hydrogen Production from Biomass-Based Feedstocks: Challenge, Solution, and Future Prospect. Process Saf. Environ. Prot. 2022, 164, 384–407, doi:10.1016/j.psep.2022.06.006.
Lepage, T.; Kammoun, M.; Schmetz, Q.; Richel, A. Biomass-to-Hydrogen: A Review of Main Routes Production, Processes Evaluation and Techno-Economical Assessment. Biomass Bioenergy 2021, 144, 105920, doi:10.1016/j.biombioe.2020.105920.
Ma, Z.; Zhang, S.; Xie, D.; Yan, Y. A Novel Integrated Process for Hydrogen Production from Biomass. Int. J. Hydrog. Energy 2014, 39, 1274–1279, doi:10.1016/j.ijhydene.2013.10.146.
Pandey, B.; Prajapati, Y.K.; Sheth, P.N. Recent Progress in Thermochemical Techniques to Produce Hydrogen Gas from Biomass: A State of the Art Review. Int. J. Hydrog. Energy 2019, 44, 25384–25415, doi:10.1016/j.ijhydene.2019.08.031.
Shayan, E.; Zare, V.; Mirzaee, I. Hydrogen Production from Biomass Gasification; a Theoretical Comparison of Using Different Gasification Agents. Energy Convers. Manag. 2018, 159, 30–41, doi:10.1016/j.enconman.2017.12.096.
Guo, J.-X.; Tan, X.; Zhu, K.; Gu, B. Integrated Management of Mixed Biomass for Hydrogen Production from Gasification. Chem. Eng. Res. Des. 2022, 179, 41–55, doi:10.1016/j.cherd.2022.01.012.
Brito, J.; Pinto, F.; Ferreira, A.; Soria, M.A.; Madeira, L.M. Steam Reforming of Biomass Gasification Gas for Hydrogen Production: From Thermodynamic Analysis to Experimental Validation. Fuel Process. Technol. 2023, 250, 107859, doi:10.1016/j.fuproc.2023.107859.
Nguyen, V.G.; Nguyen-Thi, T.X.; Phong Nguyen, P.Q.; Tran, V.D.; Ağbulut, Ü.; Nguyen, L.H.; Balasubramanian, D.; Tarelko, W.; A. Bandh, S.; Khoa Pham, N.D. Recent Advances in Hydrogen Production from Biomass Waste with a Focus on Pyrolysis and Gasification. Int. J. Hydrog. Energy 2024, 54, 127–160, doi:10.1016/j.ijhydene.2023.05.049.
Flori, G.; Frigo, S.; Barontini, F.; Gabbrielli, R.; Sica, P. Experimental Assessment of Oxy-CO2 Gasification Strategy with Woody Biomass. Renew. Energy 2024, 228, 120593, doi:10.1016/j.renene.2024.120593.
Tar_measurement_in_biomass_gasification_20160204-30232-Yp0j61-Libre.Pdf.
Hoang, A.T.; Huang, Z.; Nižetić, S.; Pandey, A.; Nguyen, X.P.; Luque, R.; Ong, H.C.; Said, Z.; Le, T.H.; Pham, V.V. Characteristics of Hydrogen Production from Steam Gasification of Plant-Originated Lignocellulosic Biomass and Its Prospects in Vietnam. Int. J. Hydrog. Energy 2022, 47, 4394–4425, doi:10.1016/j.ijhydene.2021.11.091.
A Review on Photocatalytic Water Splitting | E3S Web of Conferences Available online: https://www.e3s-conferences.org/articles/e3sconf/abs/2021/85/e3sconf_icmed2021_01032/e3sconf_icmed2021_01032.html (accessed on 20 June 2024).
Mohammed, Y.; Hafeez, H.Y.; Mohammed, J.; Suleiman, A.B.; Ndikilar, C.E.; Idris, M.G. Hydrogen Production via Photocatalytic Water Splitting Using Spinel Ferrite-Based Photocatalysts: Recent and Future Perspectives. Energy 2024, 4, 100145, doi:10.1016/j.nxener.2024.100145.
McConnachie, M.; Konarova, M.; Smart, S. Literature Review of the Catalytic Pyrolysis of Methane for Hydrogen and Carbon Production. Int. J. Hydrog. Energy 2023, 48, 25660–25682, doi:10.1016/j.ijhydene.2023.03.123.
Guéret, C.; Daroux, M.; Billaud, F. Methane Pyrolysis: Thermodynamics. Chem. Eng. Sci. 1997, 52, 815–827, doi:10.1016/S0009-2509(96)00444-7.
Abánades, A.; Ruiz, E.; Ferruelo, E.M.; Hernández, F.; Cabanillas, A.; Martínez-Val, J.M.; Rubio, J.A.; López, C.; Gavela, R.; Barrera, G.; et al. Experimental Analysis of Direct Thermal Methane Cracking. Int. J. Hydrog. Energy 2011, 36, 12877–12886, doi:10.1016/j.ijhydene.2011.07.081.
Mechanism Generation with Integrated Pressure Dependence: A New Model for Methane Pyrolysis | The Journal of Physical Chemistry A Available online: https://pubs.acs.org/doi/abs/10.1021/jp0345957 (accessed on 20 June 2024).
Ostadi, M.; Hillestad, M. Renewable-Power-Assisted Production of Hydrogen and Liquid Hydrocarbons from Natural Gas: Techno-Economic Analysis. Sustain. Energy Fuels 2022, 6, 3402–3415, doi:10.1039/D2SE00509C.
Renewable Hydrogen Production from Biogas by Sorption Enhanced Steam Reforming (SESR): A Parametric Study | DIGITAL.CSIC Available online: https://digital.csic.es/handle/10261/225127 (accessed on 20 June 2024).
Luo, J.; Zhuo, W.; Liu, S.; Xu, B. The Optimization of Carbon Emission Prediction in Low Carbon Energy Economy Under Big Data. IEEE Access 2024, 12, 14690–14702, doi:10.1109/ACCESS.2024.3351468.
Energies | Free Full-Text | A Brief Review of Hydrogen Production Methods and Their Challenges Available online: https://www.mdpi.com/1996-1073/16/3/1141 (accessed on 20 June 2024).
María Villarreal Vives, A.; Wang, R.; Roy, S.; Smallbone, A. Techno-Economic Analysis of Large-Scale Green Hydrogen Production and Storage. Appl. Energy 2023, 346, 121333, doi:10.1016/j.apenergy.2023.121333.
Shahbaz, M.; Taqvi, S.A.; Minh Loy, A.C.; Inayat, A.; Uddin, F.; Bokhari, A.; Naqvi, S.R. Artificial Neural Network Approach for the Steam Gasification of Palm Oil Waste Using Bottom Ash and CaO. Renew. Energy 2019, 132, 243–254, doi:10.1016/j.renene.2018.07.142.
Dokhani, S.; Assadi, M.; Pollet, B.G. Techno-Economic Assessment of Hydrogen Production from Seawater. Int. J. Hydrog. Energy 2023, 48, 9592–9608, doi:10.1016/j.ijhydene.2022.11.200.
Processes | Free Full-Text | Technoeconomic Analysis for Green Hydrogen in Terms of Production, Compression, Transportation and Storage Considering the Australian Perspective Available online: https://www.mdpi.com/2227-9717/11/7/2196 (accessed on 21 June 2024).
Bourne, S. The Future of Fuel: The Future of Hydrogen. Fuel Cells Bull. 2012, 2012, 12–15, doi:10.1016/S1464-2859(12)70027-5.
Wang, R.; Zhang, R. Techno-Economic Analysis and Optimization of Hybrid Energy Systems Based on Hydrogen Storage for Sustainable Energy Utilization by a Biological-Inspired Optimization Algorithm. J. Energy Storage 2023, 66, 107469, doi:10.1016/j.est.2023.107469.
Kakavand, A.; Sayadi, S.; Tsatsaronis, G.; Behbahaninia, A. Techno-Economic Assessment of Green Hydrogen and Ammonia Production from Wind and Solar Energy in Iran. Int. J. Hydrog. Energy 2023, 48, 14170–14191, doi:10.1016/j.ijhydene.2022.12.285.
Cook, B.; Hagen, C. Techno-Economic Analysis of Biomass Gasification for Hydrogen Production in Three US-Based Case Studies. Int. J. Hydrog. Energy 2024, 49, 202–218, doi:10.1016/j.ijhydene.2023.07.219.
Nouwe Edou, D.J.; Onwudili, J.A. Comparative Techno-Economic Modelling of Large-Scale Thermochemical Biohydrogen Production Technologies to Fuel Public Buses: A Case Study of West Midlands Region of England. Renew. Energy 2022, 189, 704–716, doi:10.1016/j.renene.2022.02.074.
Castro, J.; Leaver, J.; Pang, S. Simulation and Techno-Economic Assessment of Hydrogen Production from Biomass Gasification-Based Processes: A Review. Energies 2022, 15, 8455, doi:10.3390/en15228455.
Abbas, M.K.; Hassan, Q.; Tabar, V.S.; Tohidi, S.; Jaszczur, M.; Abdulrahman, I.S.; Salman, H.M. Techno-Economic Analysis for Clean Hydrogen Production Using Solar Energy under Varied Climate Conditions. Int. J. Hydrog. Energy 2023, 48, 2929–2948, doi:10.1016/j.ijhydene.2022.10.073.
Onigbajumo, A.; Swarnkar, P.; Will, G.; Sundararajan, T.; Taghipour, A.; Couperthwaite, S.; Steinberg, T.; Rainey, T. Techno-Economic Evaluation of Solar-Driven Ceria Thermochemical Water-Splitting for Hydrogen Production in a Fluidized Bed Reactor. J. Clean. Prod. 2022, 371, 133303, doi:10.1016/j.jclepro.2022.133303.
Skordoulias, N.; Koytsoumpa, E.I.; Karellas, S. Techno-Economic Evaluation of Medium Scale Power to Hydrogen to Combined Heat and Power Generation Systems. Int. J. Hydrog. Energy 2022, 47, 26871–26890, doi:10.1016/j.ijhydene.2022.06.057.
Ghorbani, B.; Zendehboudi, S.; Zhang, Y.; Zarrin, H.; Chatzis, I. Thermochemical Water-Splitting Structures for Hydrogen Production: Thermodynamic, Economic, and Environmental Impacts. Energy Convers. Manag. 2023, 297, 117599, doi:10.1016/j.enconman.2023.117599.
Mehrpooya, M.; Ghorbani, B.; Khodaverdi, M. Hydrogen Production by Thermochemical Water Splitting Cycle Using Low-Grade Solar Heat and Phase Change Material Energy Storage System. Int. J. Energy Res. 2022, 46, 7590–7609, doi:10.1002/er.7662.
Shi, W.; Zhang, R.; Li, H.; Wu, Y.; Toan, S.; Sun, Z.; Sun, Z. Modulating Mxene-Derived Ni-Mom-Mo2-mTiC2Tx Structure for Intensified Low-Temperature Ethanol Reforming. Adv. Energy Mater. 2023, 13, 2301920, doi:10.1002/aenm.202301920.
Capurso, T.; Stefanizzi, M.; Torresi, M.; Camporeale, S.M. Perspective of the Role of Hydrogen in the 21st Century Energy Transition. Energy Convers. Manag. 2022, 251, 114898, doi:10.1016/j.enconman.2021.114898.
Bhandari, R.; Trudewind, C.A.; Zapp, P. Life Cycle Assessment of Hydrogen Production via Electrolysis – a Review. J. Clean. Prod. 2014, 85, 151–163, doi:10.1016/j.jclepro.2013.07.048.
Gaikwad, P.S.; Mondal, K.; Shin, Y.K.; van Duin, A.C.T.; Pawar, G. Enhancing the Faradaic Efficiency of Solid Oxide Electrolysis Cells: Progress and Perspective. Npj Comput. Mater. 2023, 9, 1–14, doi:10.1038/s41524-023-01044-1.
Brynolf, S.; Taljegard, M.; Grahn, M.; Hansson, J. Electrofuels for the Transport Sector: A Review of Production Costs. Renew. Sustain. Energy Rev. 2018, 81, 1887–1905, doi:10.1016/j.rser.2017.05.288.
Das, G.; Choi, J.-H.; Nguyen, P.K.T.; Kim, D.-J.; Yoon, Y.S. Anion Exchange Membranes for Fuel Cell Application: A Review. Polymers 2022, 14, 1197, doi:10.3390/polym14061197.
Tschörtner, J.; Lai, B.; Krömer, J.O. Biophotovoltaics: Green Power Generation From Sunlight and Water. Front. Microbiol. 2019, 10, doi:10.3389/fmicb.2019.00866.
Pandiyan, A.; Uthayakumar, A.; Subrayan, R.; Cha, S.W.; Krishna Moorthy, S.B. Review of Solid Oxide Electrolysis Cells: A Clean Energy Strategy for Hydrogen Generation. Nanomater. Energy 2019, 8, 2–22, doi:10.1680/jnaen.18.00009.
Emerging Technologies, Markets and Commercialization of Solid‐electrolytic Hydrogen Production - Badwal - 2018 - WIREs Energy and Environment - Wiley Online Library Available online: https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wene.286 (accessed on 21 June 2024).
International Energy Agency. The Future of Hydrogen. 2019. - Google Search Available online: https://www.google.com/search?q=International+Energy+Agency.+The+future+of+hydrogen.+2019.&oq=International+Energy+Agency.+The+future+of+hydrogen.+2019.&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTIICAEQABgWGB4yCwgCEAAYFhgeGIsDMgsIAxAAGBYYHhiLAzINCAQQABiGAxiABBiKBTINCAUQABiGAxiABBiKBTINCAYQABiGAxiABBiKBTIKCAcQABiABBiiBDIKCAgQABiABBiiBNIBCDI3ODlqMWo3qAIIsAIB&sourceid=chrome&ie=UTF-8 (accessed on 21 June 2024).
Mehanovic, D.; Al-Haiek, A.; Leclerc, P.; Rancourt, D.; Fréchette, L.; Picard, M. Energetic, GHG, and Economic Analyses of Electrified Steam Methane Reforming Using Conventional Reformer Tubes. Energy Convers. Manag. 2023, 276, 116549, doi:10.1016/j.enconman.2022.116549.
Pan, Z.F.; An, L.; Zhao, T.S.; Tang, Z.K. Advances and Challenges in Alkaline Anion Exchange Membrane Fuel Cells. Prog. Energy Combust. Sci. 2018, 66, 141–175, doi:10.1016/j.pecs.2018.01.001.
Polymers | Free Full-Text | Anion Exchange Membranes for Fuel Cell Application: A Review Available online: https://www.mdpi.com/2073-4360/14/6/1197 (accessed on 21 June 2024).
A Roadmap to Low‐Cost Hydrogen with Hydroxide Exchange Membrane Electrolyzers - Abbasi - 2019 - Advanced Materials - Wiley Online Library Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201805876 (accessed on 21 June 2024).
Liu, J.; Weber, A.Z. Ionomer Optimization for Hydroxide-Exchange-Membrane Water Electrolyzers Operated with Distilled Water: A Modeling Study. J. Electrochem. Soc. 2022, 169, 054506, doi:10.1149/1945-7111/ac69c4.
Kiessling, A.; Fornaciari, J.C.; Anderson, G.; Peng, X.; Gerstmayr, A.; Gerhardt, M.R.; McKinney, S.; Serov, A.; Kim, Y.S.; Zulevi, B.; et al. Influence of Supporting Electrolyte on Hydroxide Exchange Membrane Water Electrolysis Performance: Anolyte. J. Electrochem. Soc. 2021, 168, 084512, doi:10.1149/1945-7111/ac1dcd.
In Situ Photodeposition of Platinum Clusters on a Covalent Organic Framework for Photocatalytic Hydrogen Production | Nature Communications Available online: https://www.nature.com/articles/s41467-022-29076-z (accessed on 21 June 2024).
J. McCormick, A.; Bombelli, P.; J. Lea-Smith, D.; W. Bradley, R.; M. Scott, A.; C. Fisher, A.; G. Smith, A.; J. Howe, C. Hydrogen Production through Oxygenic Photosynthesis Using the Cyanobacterium Synechocystis Sp. PCC 6803 in a Bio-Photoelectrolysis Cell (BPE) System. Energy Environ. Sci. 2013, 6, 2682–2690, doi:10.1039/C3EE40491A.
Anam, M.; I. Gomes, H.; Rivers, G.; L. Gomes, R.; Wildman, R. Evaluation of Photoanode Materials Used in Biophotovoltaic Systems for Renewable Energy Generation. Sustain. Energy Fuels 2021, 5, 4209–4232, doi:10.1039/D1SE00396H.
Zhu, H.; Meng, H.; Zhang, W.; Gao, H.; Zhou, J.; Zhang, Y.; Li, Y. Development of a Longevous Two-Species Biophotovoltaics with Constrained Electron Flow. Nat. Commun. 2019, 10, 4282, doi:10.1038/s41467-019-12190-w.
Esposito, D.V. Membraneless Electrolyzers for Low-Cost Hydrogen Production in a Renewable Energy Future. Joule 2017, 1, 651–658, doi:10.1016/j.joule.2017.07.003.
Decoupled Redox Catalytic Hydrogen Production with a Robust Electrolyte-Borne Electron and Proton Carrier | Journal of the American Chemical Society Available online: https://pubs.acs.org/doi/abs/10.1021/jacs.0c09510 (accessed on 21 June 2024).
Zhang, F.; Wang, Q. Redox-Mediated Water Splitting for Decoupled H2 Production. ACS Mater. Lett. 2021, 3, 641–651, doi:10.1021/acsmaterialslett.1c00074.
Zainal, B.S.; Ker, P.J.; Mohamed, H.; Ong, H.C.; Fattah, I.M.R.; Rahman, S.M.A.; Nghiem, L.D.; Mahlia, T.M.I. Recent Advancement and Assessment of Green Hydrogen Production Technologies. Renew. Sustain. Energy Rev. 2024, 189, 113941, doi:10.1016/j.rser.2023.113941.
IAEE Online Conference Proceedings.
Glenk, G.; Reichelstein, S. Economics of Converting Renewable Power to Hydrogen. Nat. Energy 2019, 4, 216–222, doi:10.1038/s41560-019-0326-1.
Barghash, H.; Al Farsi, A.; Okedu, K.E.; Al-Wahaibi, B.M. Cost Benefit Analysis for Green Hydrogen Production from Treated Effluent: The Case Study of Oman. Front. Bioeng. Biotechnol. 2022, 10, doi:10.3389/fbioe.2022.1046556.
Rume, E. For Further Information, Sponsorship or Delegate Registration Please Contact: 2023.
New Roads and Challenges for Fuel Cells in Heavy-Duty Transportation | Nature Energy Available online: https://www.nature.com/articles/s41560-021-00775-z (accessed on 21 June 2024).
Mesd-Afis-Report-140420-Spreads-Low-Res.Pdf.
The National Hydrogen Strategy. 2020. Berlin, Https://Www.Energy Partnership. Cl/Newsroom/Hydrogen/#:~:text=In%20order%20to%20promote%20the,Offsh Ore%20and%20 Onshore%20 Infrastructure%20needed. - Google Search Available online: https://www.google.com/search?hl=en&q=The+national+hydrogen+strategy.+2020.+Berlin,+https://www.energy+partnership.+cl/newsroom/hydrogen/%23:~:text%3DIn%2520order%2520to%2520promote%2520the,offsh+ore%2520and%2520+onshore%2520+infrastructure%2520needed. (accessed on 21 June 2024).
Ally, J.; Pryor, T.; Pigneri, A. The Role of Hydrogen in Australia’s Transport Energy Mix. Int. J. Hydrog. Energy 2015, 40, 4426–4441, doi:10.1016/j.ijhydene.2015.02.022.
Mansilla, C.; Avril, S.; Imbach, J.; Le Duigou, A. CO2-Free Hydrogen as a Substitute to Fossil Fuels: What Are the Targets? Prospective Assessment of the Hydrogen Market Attractiveness. Int. J. Hydrog. Energy 2012, 37, 9451–9458, doi:10.1016/j.ijhydene.2012.03.149.
Energies | Free Full-Text | Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications; Challenges and Expected Opportunities Available online: https://www.mdpi.com/1996-1073/15/13/4741 (accessed on 21 June 2024).
Uyar, T.S.; Javani, N. Renewable Energy Based Solutions; Springer Nature, 2022; ISBN 978-3-031-05125-8.
Hannan, M.A.; Abu, S.M.; Al-Shetwi, A.Q.; Mansor, M.; Ansari, M.N.M.; Muttaqi, K.M.; Dong, Z.Y. Hydrogen Energy Storage Integrated Battery and Supercapacitor Based Hybrid Power System: A Statistical Analysis towards Future Research Directions. Int. J. Hydrog. Energy 2022, 47, 39523–39548, doi:10.1016/j.ijhydene.2022.09.099.
Awad, M.; Said, A.; Saad, M.H.; Farouk, A.; Mahmoud, M.M.; Alshammari, M.S.; Alghaythi, M.L.; Abdel Aleem, S.H.E.; Abdelaziz, A.Y.; Omar, A.I. A Review of Water Electrolysis for Green Hydrogen Generation Considering PV/Wind/Hybrid/Hydropower/Geothermal/Tidal and Wave/Biogas Energy Systems, Economic Analysis, and Its Application. Alex. Eng. J. 2024, 87, 213–239, doi:10.1016/j.aej.2023.12.032.
L.S. Jose, B.L. Bollini, M.E. Da SIlva, T.S. Colombaroli, C.E. Tuna, F.H.M. de Araujo, L.F. Vane, D.T. Pedroso, L.C.F.T. Tapia, R.Z. Virgoux, Sustain. Hydrog. Prod. Process. 183 (2017), Https://Doi.Org/10.1007/978-3-319-41616-8. - Google Search Available online: https://www.google.com/search?hl=en&q=L.S.+Jose,+B.L.+Bollini,+M.E.+da+SIlva,+T.S.+Colombaroli,+C.E.+Tuna,+F.H.M.+de++Araujo,+L.F.+Vane,+D.T.+Pedroso,+L.C.F.T.+Tapia,+R.Z.+Virgoux,+Sustain.+Hydrog.++Prod.+Process.+183+(2017),+https://doi.org/10.1007/978-3-319-41616-8.+ (accessed on 21 June 2024).
Analysis, Modeling and Control of a Non-Grid-Connected Source-Load Collaboration Wind-Hydrogen System | Journal of Electrical Engineering & Technology Available online: https://link.springer.com/article/10.1007/s42835-021-00774-w (accessed on 22 June 2024).
Fang, R.; Liang, Y. Control Strategy of Electrolyzer in a Wind-Hydrogen System Considering the Constraints of Switching Times. Int. J. Hydrog. Energy 2019, 44, 25104–25111, doi:10.1016/j.ijhydene.2019.03.033.
Privitera, S.M.S.; Muller, M.; Zwaygardt, W.; Carmo, M.; Milazzo, R.G.; Zani, P.; Leonardi, M.; Maita, F.; Canino, A.; Foti, M.; et al. Highly Efficient Solar Hydrogen Production through the Use of Bifacial Photovoltaics and Membrane Electrolysis. J. Power Sources 2020, 473, 228619, doi:10.1016/j.jpowsour.2020.228619.
Awad, M.; Ibrahim, A.M.; Alaas, Z.M.; El-Shahat, A.; Omar, A.I. Design and Analysis of an Efficient Photovoltaic Energy-Powered Electric Vehicle Charging Station Using Perturb and Observe MPPT Algorithm. Front. Energy Res. 2022, 10, doi:10.3389/fenrg.2022.969482.
Can Africa Clean up with Green Hydrogen? Control Risks. 2022. Https://Www.Con Trolrisks.Com/Our-Thinking/Insights/Can-Africa-Clean-up-with-Green-Hydrogen. [Accessed 5 February 2023]. - Google Search Available online: https://www.google.com/search?hl=en&q=Can+Africa+clean+up+with+green+hydrogen%3F+Control+Risks.+2022.+https://www.con+trolrisks.com/our-thinking/insights/can-africa-clean-up-with-green-hydrogen.+%5BAccessed+5+February+2023%5D. (accessed on 22 June 2024).
Energies | Free Full-Text | The Potential of Collaboration between India and Japan in the Hydrogen Sector Available online: https://www.mdpi.com/1996-1073/16/8/3596 (accessed on 22 June 2024).
Yang, H.; Xu, S.; Gao, W.; Wang, Y.; Li, Y.; Wei, X. Mitigating Long-Term Financial Risk for Large Customers via a Hybrid Procurement Strategy Considering Power Purchase Agreements. Energy 2024, 295, 131038, doi:10.1016/j.energy.2024.131038.
Islam, A.; Islam, T.; Mahmud, H.; Raihan, O.; Islam, Md.S.; Marwani, H.M.; Rahman, M.M.; Asiri, A.M.; Hasan, Md.M.; Hasan, Md.N.; et al. Accelerating the Green Hydrogen Revolution: A Comprehensive Analysis of Technological Advancements and Policy Interventions. Int. J. Hydrog. Energy 2024, 67, 458–486, doi:10.1016/j.ijhydene.2024.04.142.
Quitzow, R.; Nunez, A.; Marian, A. Positioning Germany in an International Hydrogen Economy: A Policy Review. Energy Strategy Rev. 2024, 53, 101361, doi:10.1016/j.esr.2024.101361.
Xinhua. China Maps 2021-2035 Plan on Hydrogen Energy Development. National Development and Reform Commission (NDRC); 2022. Https://En.Ndrc.Gov.Cn/n Ews/Press Releases/202203/T20220329_1321487.Html. [Accessed 19 January 2023]. - Google Search Available online: https://www.google.com/search?hl=en&q=Xinhua.+China+maps+2021-2035+plan+on+hydrogen+energy+development.+National+Development+and+Reform+Commission+(NDRC)%3B+2022.+https://en.ndrc.gov.cn/n+ews/press+releases/202203/t20220329_1321487.html.+%5BAccessed+19+January+2023%5D. (accessed on 22 June 2024).
Secretary of State for Business E& IS. UK Hydrogen Strategy. 2021. [222] Department for Business E and IS. Hydrogen Strategy Update to the Market: July 2022. Depart Bus Energy Industrial Strategy 2022:1–30. - Google Search Available online: https://www.google.com/search?hl=en&q=Secretary+of+State+for+Business+E%26+IS.+UK+hydrogen+strategy.+2021.+%5B222%5D+Department+for+Business+E+and+IS.+Hydrogen+strategy+update+to+the+market:+july+2022.+Depart+Bus+Energy+Industrial+Strategy+2022:1%E2%80%9330. (accessed on 22 June 2024).