Charge transport materials, bismuth and copper-based perovskite solar cells: A review
Corresponding Author(s) : Ankit Stephen Thomas
Future Energy,
Vol. 1 No. 3 (2022): November 2022 Issue
Abstract
Improving perovskite solar cell (PSC) efficiencies would not have been possible without discovering and incorporating novel materials. More significant than materials usage is the compatibility of various material components in the entire device. Charge transport materials have been at the heart of this discussion to decide a PSC's functioning fundamentally. This review highlights various high-efficiency examples using alternate charge transport materials, bringing us one step closer to commercializing this technology. The article also elaborates on recent innovations in Bismuth and Copper-based PSCs. These are possible candidates to replace the conventional materials used in a standard PSC and affirmatively yield favorable results through extensive research.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Jin, J., Yang, M., Deng, W., Xin, J., Tai, Q., & Qian, J. et al. (2021). Highly efficient and stable carbon-based perovskite solar cells with the polymer hole transport layer. Solar Energy, 220, 491-497. doi: 10.1016/j.solener.2021.03.081
- Chen, H.-B.; Ding, X.-H.; Pan, X.; Hayat, T.; Alsaedi, A.; Ding, Y.; Dai, S.-Y., Incorporating C60 as Nucleation Sites Optimizing PbI2 Films to Achieve Perovskite Solar Cells Showing Excellent Efficiency and Stability Via Vapor-Assisted Deposition Method. ACS Appl. Mater. Interfaces 2018, 10, 2603-2611.
- Enhanced Performance and Stability of Planar Perovskite Solar Cells by Interfacial Engineering using Fluorinated Aliphatic Amines Shuai Zhao, Baohua Zhao, Yanli Chen, Guangwu Yang, and Xiyou Li ACS Applied Energy Materials 2019 2 (9), 6230-6236 DOI: 10.1021/acsaem.9b00757
- Zhang, L., Zhou, X., Zhong, X., Cheng, C., Tian, Y., & Xu, B. (2019). Hole-transporting layer based on a conjugated polyelectrolyte with organic cations enables efficient inverted perovskite solar cells. Nano Energy, 57, 248-255. doi: 10.1016/j.nanoen.2018.12.033
- Tsarev, S., Luchkin, S., Stevenson, K., & Troshin, P. (2020). Perylenetetracarboxylic dianhydride as organic electron transport layer for n-i-p perovskite solar cells. Synthetic Metals, 268, 116497. doi: 10.1016/j.synthmet.2020.116497
- J.L. Wu, W.K. Huang, Y.C. Chang, B.C. Tsai, Y.C. Hsiao, C.Y. Chang, C.T. Chen, C.T. Chen, Simple mono-halogenated perylene diimides as non-fullerene electron transporting materials in inverted perovskite solar cells with ZnO nanoparticle cathode buffer layers, J. Mater. Chem. A 5 (2017) 12811–12821.
- S.S. Kim, S. Bae, W.H. Jo, A perylene diimide-based non-fullerene acceptor as an electron transporting material for inverted perovskite solar cells, RSC Adv. 6 (2016) 19923–19927.
- C. Chen, M. Cheng, H. Li, F. Qiao, P. Liu, H. Li, L. Kloo, L. Sun, Molecular engineering of ionic type perylenediimide dimer-based electron transport materials for efficient planar perovskite solar cells, Mater. Today Energy 9 (2018) 264–270.
- G.-H. Kim, H. Jang, Y.-J. Yoon, J. Jeong, S.Y. Park, B. Walker, et al., Fluorine functionalized graphene nano platelets for highly stable inverted perovskite solar cells, Nano Lett. 17 (10) (2017) 6385–6390.
- P. Karuppuswamy, C. Hanmandlu, K. Moorthy Boopathi, P. Perumal, Cching Liu, Y.F. Chen, Y.C. Chang, P.C. Wang, C.S. Lai, C.W. Chu, Solution-processable electron transport layer for efficient hybrid perovskite solar cells beyond fullerenes, Sol. Energy Mater. Sol. Cells 169 (2017) 78–85.
- F. Bella, G. Griffini, J.-P. Correa-Baena, G. Saracco, M. Gratzel, A. Hagfeldt, et al., Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers, Science 354 (6309) (2016) 203–206.
- H. Liu, M. Wang, J. Bian, Y. Feng, Z. Wang, B. Zhang, et al., Enhanced stability of perovskite solar cells using hydrophobic organic fluoropolymer, Appl. Phys. Lett. 113 (2) (2018), 023902.
- Zijun Wang, Dayong Zhang, Genjie Yang, and Junsheng Yu , "Exceeding 19% efficiency for inverted perovskite solar cells used conventional organic small molecule TPD as hole transport layer", Appl. Phys. Lett. 118, 183301 (2021) https://doi.org/10.1063/5.0050512
- X. Xu, C. Ma, Y. Chen, Y. M. Xie, X. Yi, B. Gautam, S. Chen, H. W. Li, C. S. Lee, F. So, and S. W. Tsang, J. Power Sources 360, 157 (2017).
- X. Liu, Y. Cheng, C. Liu, T. Zhang, N. Zhang, S. Zhang, J. Chen, Q. Xu, J. Quyang, and H. Gong, Energy Environ. Sci. 12, 1622 (2019).
- J. Yang, C. Liu, C. Cai, X. Hu, Z. Huang, X. Duan, et al., High-performance perovskite solar cells with excellent humidity and thermo-stability via fluorinated perylenediimide, Adv. Energy. Mater. 9 (18) (2019), 1900198.
- Malik, H., Ma, L., Luo, J., Xia, J., Wan, Z., & Khan, M. et al. (2020). Novel hole transporting material based on tetrathiafulvalene derivative: A step towards dopant free, ambient stable and efficient perovskite solar cells. Solar Energy, 201, 658-665. doi: 10.1016/j.solener.2020.03.003
- Luo, J., Xia, J., Yang, H., Chen, L., Wan, Z., Han, F., Malik, H.A., Zhu, X., Jia, C.Y., 2018. Energy Environ. Sci. 11, 2035–2045.
- Luo, J., Xia, J., Yang, H., Malik, H.A., Han, F., Shu, H., Yao, X., Wan, Z., Jia, C.Y., 2020. Nano Energy. 70, 104509.
- D. Yang, T. Sano, Y. Yaguchi, H. Sun, H. Sasabe, and J. Kido, Adv. Funct. Mater. 29, 1807556 (2019).
- J. Zhang, B. Xu, L. Yang, A. Mingorance, C. Ruan, Y. Hua, L. Wang, N. Vlachopoulos, M. Lira-Cantú, G. Boschloo, A. Hagfeldt, L. Sun and E. M. J. Johansson, Advanced Energy Materials, 2017, 7, 1602736.
- 17. C. Huang, W. Fu, C. Z. Li, Z. Zhang, W. Qiu, M. Shi, P. Heremans, A. K. Jen and H. Chen, J Am Chem Soc, 2016, 138, 2528-2531.
- Toward ideal hole transport materials: a review on recent progress in dopant-free hole transport materials for fabricating efficient and stable perovskite solar cells, Xinxing Yin, Zhaoning Song, Zaifang Li and Weihua Tang, Energy Environ. Sci., 2020,13, 4057-4086.
- N.K. Elumalai, A. Uddin, Hysteresis in organic-inorganic hybrid perovskite solar cells, Sol. Energy Mater. Sol. Cells 157 (2016) 476e509.
- Fan Wu, Rajesh Pathak, Chong Chen, Yanhua Tong, Haibin Xu, Tiansheng Zhang, Ronghua Jian, Xiaoyi Li, Qiquan Qiao, Reduced hysteresis in perovskite solar cells using metal oxide/organic hybrid hole transport layer with generated interfacial dipoles, Electrochimica Acta, Volume 354, 2020, 136660, ISSN 0013-4686, https://doi.org/10.1016/j.electacta.2020.136660.
- S.N. Habisreutinger, N.K. Noel, H.J. Snaith, Hysteresis index: a figure without merit for quantifying hysteresis in perovskite solar cells, ACS Energy Lett. 3 (2018) 2472e2476.
- Z. Chen, J.J. Wang, Y. Ren, C. Yu, Kai Shum, Appl. Phys. Lett. 101 (2012), 093901.
- Nakita K. Noel, et al., Lead-free organiceinorganic tin halide perovskites for photovoltaic applications, Energy Environ. Sci. 7 (9) (2014) 3061e3068.
- C. Wehrenfennig, M. Liu, H.J. Snaith, M.B. Johnston, L.M. Herz, Homogeneous emission line broadening in the organo lead halide perovskite CH3NH3PbI3xClx, J. Phys. Chem. Lett. 5 (2014) 1300e1306.
- Takeo Oku, Crystal Structures of CH3NH3PbI3 and Related Perovskite Compounds Used for Solar Cells, Solar Cells-New Approaches and Reviews, InTech, 2015.
- G. Giorgi, K. Yamashita, Alternative, lead-free, hybrid organiceinorganic perovskites for solar applications: a DFT analysis, Chem. Lett. 44 (6) (2015) 826e828.
- Ismail Benabdallah, Mourad Boujnah, Abdallah El Kenz, Abdelilah Benyoussef, Mohamed Abatal, Ali Bassam, Lead-free perovskite based bismuth for solar cells absorbers, Journal of Alloys and Compounds, Volume 773, 2019, Pages 796-801, ISSN 0925-8388, https://doi.org/10.1016/j.jallcom.2018.09.332.
- T. Singh, A. Kulkarni, M. Ikegami, T. Miyasaka, ACS Appl. Mater. Interfaces 8, 14542 (2016).
- B.-W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, E. M. J. Johansson, Adv. Mater. 27, 6806 (2015).
- Sanders, S., Stümmler, D., Pfeiffer, P., Ackermann, N., Simkus, G., Heuken, M., . . . Kalisch, H. (2018). Fabrication and Characterization of Air-Stable Organic-Inorganic Bismuth-Based Perovskite Solar Cells. MRS Advances, 3(51), 3085-3090. doi:10.1557/adv.2018.514
- B. Chen, H. Hu, T. Salim, Y.M. Lam, A facile method to evaluate the influence of trap densities on perovskite solar cell performance, J. Mater. Chem. C 7 (19) (2019) 5646–5651, https://doi.org/10.1039/C9TC00816K.
- W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.-L. Wang, A.D. Mohite, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science 347 (6221) (2015) 522–525, https://doi.org/10.1126/science:aaa0472.
- B.-M. Bresolin, S.B. Hammouda, M. Sillanpää, Methylammonium iodo bismuthate perovskite (CH3NH3)3Bi2I9 as new effective visible lightresponsive photocatalyst for degradation of environment pollutants, J. Photochem. Photobiol., A 376 (2019) 116–126, https://doi.org/10.1016/j.jphotochem.2019.03.009.
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc. 131 (17) (2009) 6050–6051, https://doi.org/10.1021/ja809598r.
- Muhd Sahrul Nizam Sahul Hameed, Farhana Aziz, Solvent engineering of lea free bismuth-based perovskite material for potential application of solar cell, Materials Today: Proceedings, Volume 46, Part 5, 2021, Pages 1837-1842, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2020.11.1018.
- a) T. Krishnamoorthy, H. Ding, C. Yan, W. L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, S. G. Mhaisalkar, J. Mater. Chem. A 2015, 3, 23829; b) F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, Nat. Photonics 2014, 8, 489; c) M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, N. Mathews, Adv. Mater. 2014, 26, 7122.
- S. Shao, J. Liu, G. Portale, H. H. Fang, G. R. Blake, G. H. t. Brink, L. J. A. Koster, M. A. Loi, Adv. Energy Mater. 2018, 8, 1702019.
- P. C. Harikesh, H. K. Mulmudi, B. Ghosh, T. W. Goh, Y. T. Teng, K. Thirumal, M. Lockrey, K. Weber, T. M. Koh, S. Li, S. Mhaisalkar, N. Mathews, Chem. Mater. 2016, 28, 7496
- H. Robert, B. Riley, O. Anna, S. Vladan, S. Samuel, W. Mark, K. Hyunho, A. Austin, P. John, K. Rachel, P. Jeremy, W. Evelyn, B. Moungi, B. Vladimir, B. Tonio, Chem. Eur. J. 2016, 22, 2605
- M. Lyu, J.-H. Yun, M. Cai, Y. Jiao, P. V. Bernhardt, M. Zhang, Q. Wang, A. Du, H. Wang, G. Liu, L. Wang, Nano Res. 2016, 9, 692
- B.-W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, E. M. J. Johansson, Adv. Mater. 2015, 27, 6806.
- B. Ghosh, S. Chakraborty, H. Wei, C. Guet, S. Li, S. Mhaisalkar, N. Mathews, J. Phys. Chem. C 2017, 121, 17062; b) B. Ghosh, B. Wu, H. K. Mulmudi, C. Guet, K. Weber, T. C. Sum, S. G. Mhaisalkar, N. Mathews, ACS Appl. Mater. Interfaces 2018.
- Y. Kim, Z. Yang, A. Jain, O. Voznyy, G.-H. Kim, M. Liu, L. N. Quan, F. P. García de Arquer, R. Comin, J. Z. Fan, E. H. Sargent, Angew. Chem. 2016, 128, 9738.
- H. Zhu, M. Pan, M. B. Johansson, E. M. J. Johansson, ChemSusChem 2017, 10, 2592.
- Ghosh, B., Wu, B., Guo, X., Harikesh, P., John, R., & Baikie, T. et al. (2018). Superior Performance of Silver Bismuth Iodide Photovoltaics Fabricated via Dynamic Hot-Casting Method under Ambient Conditions. Advanced Energy Materials, 8(33), 1802051. doi: 10.1002/aenm.201802051
- Zhang F, Yang X, Cheng M, Wang W, Sun L. Boosting the efficiency and the stability of low cost perovskite solar cells by using CuPc nanorods as hole transport material and carbon as counter electrode. Nano Energy 2016;20: 108e16.
- Ke W, Zhao D, Grice CR, Cimaroli AJ, Fang G, Yan Y. Efficient fully-vacuum processed perovskite solar cells using copper phthalocyanine as hole selective layers. J Mater Chem A 2015;3:23888e94.
- Cho KT, Rakstys K, Cavazzini M, Orlandi S, Pozzi G, Nazeeruddin MK. Perovskite solar cells employing molecularly engineered Zn(II) phthalocyanines as hole-transporting materials. Nano Energy 2016. http://dx.doi.org/10.1016/j.nanoen.2016.09.008.
- Yang G, Wang YL, Xu JJ, Lei HW, Chen C, Shan HQ, et al. A facile molecularly engineered copper (II) phthalocyanine as hole transport material for planar perovskite solar cells with enhanced performance and stability. Nano Energy 2016. http://dx.doi.org/10.1016/j.nanoen.2016.11.039.
- Liu, X., Wang, Y., Rezaee, E., Chen, Q., Feng, Y., & Sun, X. et al. (2018). Tetra-Propyl-Substituted Copper (II) Phthalocyanine as Dopant-Free Hole Transporting Material for Planar Perovskite Solar Cells. Solar RRL, 2(7), 1800050. doi: 10.1002/solr.201800050
- S. Wang, W. Yuan, Y.S. Meng, ACS Appl. Mater. Interf. 7 (2015) 24791, https://doi.org/10.1021/acsami.5b07703.
- M. Freitag, Q. Daniel, M. Pazoki, K. Sveinbjörnsson, J.B. Zhang, L. C. Sun, A. Hagfeldt. G. Boschloo. Energy Environ. Sci. 8, 2634 (2015). https://doi.org/ 10. 1039/C5EE01204J.
- Y.M. Cao, Y. Saygili, A. Ummadisingu, J. Teuscher, J.S. Luo, N. Pellet, F. Giordano, S.M. Zakeeruddin, J.-E. Moser, M. Freitag, A. Hagfeldt, M. Grätzel, Nat. Commun. 8 (2017) 15390, https://doi.org/10.1038/ncomms15390.
- S. Chen, P. Liu, Y. Hua, Y.Y. Li, L. Kloo, X.Z. Wang, B. Ong, W.K. Wong, X.J. Zhu, ACS Appl. Mater. Interfaces 9 (2017) 13231, https://doi.org/10.1021/acsami.7b01904.
- Chang-Dai Si, Xu-Dong Lv, Shi-Jia Long, Perovskite solar cells employing copper (I/II) porphyrin hole-transport material with enhanced performance, Inorganic Chemistry Communications, Volume 112, 2020, 107701, ISSN 1387-7003, https://doi.org/10.1016/j.inoche.2019.107701.
- M.I. Hossain, F.H. Alharbi, N. Tabet, Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells, Sol. Energy 120 (2015) 370–380.
- K.C. Wang, P.S. Shen, M.H. Li, S. Chen, M.W. Lin, P. Chen, T.F. Guo, Low- temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells, ACS Appl. Mater. Interfaces 6 (2014) 11851–11858.
- V. Trifiletti, V. Roiati, S. Colella, R. Giannuzzi, L. De Marco, A. Rizzo, M Manca, A. Listorti, G. Gigli, NiO/MAPbI(3-x)Cl(x)/PCBM. a model case for an improved understanding of inverted mesoscopic solar cells, ACS Appl. Mater. Interfaces 7 (2015) 4283–4289.
- W. Sun, S. Ye, H. Rao, Y. Li, Z. Liu, L. Xiao, Z. Chen, Z. Bian, C. Huang, Room-temperature and solution-processed copper iodide as the hole transport layer for inverted planar perovskite solar cells, Nanoscale 8 (2016) 15954–15960.
- D.Y. Lee, S.I. Na, S.S. Kim, Graphene oxide/PEDOT:PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells, Nanoscale 8 (2016) 1513–1522.
- J.A. Christians, R.C.M. Fung, P.V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells. improved hole conductivity with copper iodide, J. Am. Chem. Soc. 136 (2014) 758–764.
- G.A. Sepalage, S. Meyer, A. Pascoe, A.D. Scully, F.Z. Huang, U. Bach, Y.B. Cheng, L. Spiccia, Copper(I) iodide as hole-conductor in planar perovskite solar cells: probing the origin of J-V hysteresis, Adv. Funct. Mater. 25 (2015) 5650–5661.
- Wei-Dong Hu, Chunxiang Dall’Agnese, Xiao-Feng Wang, Gang Chen, Meng-Zhen Li, Jia-Xing Song, Ying-Jin Wei, Tsutomu Miyasaka, Copper iodide-PEDOT:PSS double hole transport layers for improved efficiency and stability in perovskite solar cells, Journal of Photochemistry and Photobiology A: Chemistry, Volume 357, 2018, Pages 36-40, ISSN 1010-6030, https://doi.org/10.1016/j.jphotochem.2018.02.018.
- N.-G. Park, Perovskite solar cells: an emerging photovoltaic technology, Mater. Today 18 (2015) 65–72, https://doi.org/10.1016/j.mattod.2014.07.007.
- P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K.Nazeeruddin, M. Grätzel, Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency, Nat Commun. 5 (2014), https://doi.org/10.1038/ncomms4834.
- Z. Liu, A. Zhu, F. Cai, L. Tao, Y. Zhou, Z. Zhao, Q. Chen, Y.-B. Cheng, H. Zhou, Nickel oxide nanoparticles for efficient hole transport in p-i-n and n-i-p perovskite solar cells, J. Mater. Chem. A 5 (2017) 6597–6605, https://doi.org/10.1039/C7TA01593C.
- M.I. Hossain, F.H. Alharbi, N. Tabet, Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells, Sol. Energy 120 (2015) 370–380, https://doi.org/10.1016/j.solener.2015.07.040.
- N. Arora, M.I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S.M. Zakeeruddin, M. Grätzel, Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%, Science 80 (2017) (2017), https://doi.org/10.1126/science.aam5655.
- W. Ke, G. Fang, H. Lei, P. Qin, H. Tao, W. Zeng, J. Wang, X. Zhao, An efficient and transparent copper sulfide nanosheet film counter electrode for bifacial quantum dot-sensitized solar cells, J. Power Sources 248 (2014) 809–815, https://doi.org/10.1016/j.jpowsour.2013.10.028.
- K.-J. Huang, J.-Z. Zhang, Y. Fan, One-step solvothermal synthesis of different morphologies CuS nanosheets compared as supercapacitor electrode materials, J. J. Tirado et al. Applied Surface Science 478 (2019) 607–614 Alloys Compd. 625 (2015) 158–163, https://doi.org/10.1016/j.jallcom.2014.11.137.
- Juan Tirado, Cristina Roldán-Carmona, Fabio A. Muñoz-Guerrero, Gemay Bonilla-Arboleda, Maryline Ralaiarisoa, Giulia Grancini, Valentin I.E. Queloz, Norbert Koch, Mohammad Khaja Nazeeruddin, Franklin Jaramillo,
References
Jin, J., Yang, M., Deng, W., Xin, J., Tai, Q., & Qian, J. et al. (2021). Highly efficient and stable carbon-based perovskite solar cells with the polymer hole transport layer. Solar Energy, 220, 491-497. doi: 10.1016/j.solener.2021.03.081
Chen, H.-B.; Ding, X.-H.; Pan, X.; Hayat, T.; Alsaedi, A.; Ding, Y.; Dai, S.-Y., Incorporating C60 as Nucleation Sites Optimizing PbI2 Films to Achieve Perovskite Solar Cells Showing Excellent Efficiency and Stability Via Vapor-Assisted Deposition Method. ACS Appl. Mater. Interfaces 2018, 10, 2603-2611.
Enhanced Performance and Stability of Planar Perovskite Solar Cells by Interfacial Engineering using Fluorinated Aliphatic Amines Shuai Zhao, Baohua Zhao, Yanli Chen, Guangwu Yang, and Xiyou Li ACS Applied Energy Materials 2019 2 (9), 6230-6236 DOI: 10.1021/acsaem.9b00757
Zhang, L., Zhou, X., Zhong, X., Cheng, C., Tian, Y., & Xu, B. (2019). Hole-transporting layer based on a conjugated polyelectrolyte with organic cations enables efficient inverted perovskite solar cells. Nano Energy, 57, 248-255. doi: 10.1016/j.nanoen.2018.12.033
Tsarev, S., Luchkin, S., Stevenson, K., & Troshin, P. (2020). Perylenetetracarboxylic dianhydride as organic electron transport layer for n-i-p perovskite solar cells. Synthetic Metals, 268, 116497. doi: 10.1016/j.synthmet.2020.116497
J.L. Wu, W.K. Huang, Y.C. Chang, B.C. Tsai, Y.C. Hsiao, C.Y. Chang, C.T. Chen, C.T. Chen, Simple mono-halogenated perylene diimides as non-fullerene electron transporting materials in inverted perovskite solar cells with ZnO nanoparticle cathode buffer layers, J. Mater. Chem. A 5 (2017) 12811–12821.
S.S. Kim, S. Bae, W.H. Jo, A perylene diimide-based non-fullerene acceptor as an electron transporting material for inverted perovskite solar cells, RSC Adv. 6 (2016) 19923–19927.
C. Chen, M. Cheng, H. Li, F. Qiao, P. Liu, H. Li, L. Kloo, L. Sun, Molecular engineering of ionic type perylenediimide dimer-based electron transport materials for efficient planar perovskite solar cells, Mater. Today Energy 9 (2018) 264–270.
G.-H. Kim, H. Jang, Y.-J. Yoon, J. Jeong, S.Y. Park, B. Walker, et al., Fluorine functionalized graphene nano platelets for highly stable inverted perovskite solar cells, Nano Lett. 17 (10) (2017) 6385–6390.
P. Karuppuswamy, C. Hanmandlu, K. Moorthy Boopathi, P. Perumal, Cching Liu, Y.F. Chen, Y.C. Chang, P.C. Wang, C.S. Lai, C.W. Chu, Solution-processable electron transport layer for efficient hybrid perovskite solar cells beyond fullerenes, Sol. Energy Mater. Sol. Cells 169 (2017) 78–85.
F. Bella, G. Griffini, J.-P. Correa-Baena, G. Saracco, M. Gratzel, A. Hagfeldt, et al., Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers, Science 354 (6309) (2016) 203–206.
H. Liu, M. Wang, J. Bian, Y. Feng, Z. Wang, B. Zhang, et al., Enhanced stability of perovskite solar cells using hydrophobic organic fluoropolymer, Appl. Phys. Lett. 113 (2) (2018), 023902.
Zijun Wang, Dayong Zhang, Genjie Yang, and Junsheng Yu , "Exceeding 19% efficiency for inverted perovskite solar cells used conventional organic small molecule TPD as hole transport layer", Appl. Phys. Lett. 118, 183301 (2021) https://doi.org/10.1063/5.0050512
X. Xu, C. Ma, Y. Chen, Y. M. Xie, X. Yi, B. Gautam, S. Chen, H. W. Li, C. S. Lee, F. So, and S. W. Tsang, J. Power Sources 360, 157 (2017).
X. Liu, Y. Cheng, C. Liu, T. Zhang, N. Zhang, S. Zhang, J. Chen, Q. Xu, J. Quyang, and H. Gong, Energy Environ. Sci. 12, 1622 (2019).
J. Yang, C. Liu, C. Cai, X. Hu, Z. Huang, X. Duan, et al., High-performance perovskite solar cells with excellent humidity and thermo-stability via fluorinated perylenediimide, Adv. Energy. Mater. 9 (18) (2019), 1900198.
Malik, H., Ma, L., Luo, J., Xia, J., Wan, Z., & Khan, M. et al. (2020). Novel hole transporting material based on tetrathiafulvalene derivative: A step towards dopant free, ambient stable and efficient perovskite solar cells. Solar Energy, 201, 658-665. doi: 10.1016/j.solener.2020.03.003
Luo, J., Xia, J., Yang, H., Chen, L., Wan, Z., Han, F., Malik, H.A., Zhu, X., Jia, C.Y., 2018. Energy Environ. Sci. 11, 2035–2045.
Luo, J., Xia, J., Yang, H., Malik, H.A., Han, F., Shu, H., Yao, X., Wan, Z., Jia, C.Y., 2020. Nano Energy. 70, 104509.
D. Yang, T. Sano, Y. Yaguchi, H. Sun, H. Sasabe, and J. Kido, Adv. Funct. Mater. 29, 1807556 (2019).
J. Zhang, B. Xu, L. Yang, A. Mingorance, C. Ruan, Y. Hua, L. Wang, N. Vlachopoulos, M. Lira-Cantú, G. Boschloo, A. Hagfeldt, L. Sun and E. M. J. Johansson, Advanced Energy Materials, 2017, 7, 1602736.
17. C. Huang, W. Fu, C. Z. Li, Z. Zhang, W. Qiu, M. Shi, P. Heremans, A. K. Jen and H. Chen, J Am Chem Soc, 2016, 138, 2528-2531.
Toward ideal hole transport materials: a review on recent progress in dopant-free hole transport materials for fabricating efficient and stable perovskite solar cells, Xinxing Yin, Zhaoning Song, Zaifang Li and Weihua Tang, Energy Environ. Sci., 2020,13, 4057-4086.
N.K. Elumalai, A. Uddin, Hysteresis in organic-inorganic hybrid perovskite solar cells, Sol. Energy Mater. Sol. Cells 157 (2016) 476e509.
Fan Wu, Rajesh Pathak, Chong Chen, Yanhua Tong, Haibin Xu, Tiansheng Zhang, Ronghua Jian, Xiaoyi Li, Qiquan Qiao, Reduced hysteresis in perovskite solar cells using metal oxide/organic hybrid hole transport layer with generated interfacial dipoles, Electrochimica Acta, Volume 354, 2020, 136660, ISSN 0013-4686, https://doi.org/10.1016/j.electacta.2020.136660.
S.N. Habisreutinger, N.K. Noel, H.J. Snaith, Hysteresis index: a figure without merit for quantifying hysteresis in perovskite solar cells, ACS Energy Lett. 3 (2018) 2472e2476.
Z. Chen, J.J. Wang, Y. Ren, C. Yu, Kai Shum, Appl. Phys. Lett. 101 (2012), 093901.
Nakita K. Noel, et al., Lead-free organiceinorganic tin halide perovskites for photovoltaic applications, Energy Environ. Sci. 7 (9) (2014) 3061e3068.
C. Wehrenfennig, M. Liu, H.J. Snaith, M.B. Johnston, L.M. Herz, Homogeneous emission line broadening in the organo lead halide perovskite CH3NH3PbI3xClx, J. Phys. Chem. Lett. 5 (2014) 1300e1306.
Takeo Oku, Crystal Structures of CH3NH3PbI3 and Related Perovskite Compounds Used for Solar Cells, Solar Cells-New Approaches and Reviews, InTech, 2015.
G. Giorgi, K. Yamashita, Alternative, lead-free, hybrid organiceinorganic perovskites for solar applications: a DFT analysis, Chem. Lett. 44 (6) (2015) 826e828.
Ismail Benabdallah, Mourad Boujnah, Abdallah El Kenz, Abdelilah Benyoussef, Mohamed Abatal, Ali Bassam, Lead-free perovskite based bismuth for solar cells absorbers, Journal of Alloys and Compounds, Volume 773, 2019, Pages 796-801, ISSN 0925-8388, https://doi.org/10.1016/j.jallcom.2018.09.332.
T. Singh, A. Kulkarni, M. Ikegami, T. Miyasaka, ACS Appl. Mater. Interfaces 8, 14542 (2016).
B.-W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, E. M. J. Johansson, Adv. Mater. 27, 6806 (2015).
Sanders, S., Stümmler, D., Pfeiffer, P., Ackermann, N., Simkus, G., Heuken, M., . . . Kalisch, H. (2018). Fabrication and Characterization of Air-Stable Organic-Inorganic Bismuth-Based Perovskite Solar Cells. MRS Advances, 3(51), 3085-3090. doi:10.1557/adv.2018.514
B. Chen, H. Hu, T. Salim, Y.M. Lam, A facile method to evaluate the influence of trap densities on perovskite solar cell performance, J. Mater. Chem. C 7 (19) (2019) 5646–5651, https://doi.org/10.1039/C9TC00816K.
W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.-L. Wang, A.D. Mohite, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science 347 (6221) (2015) 522–525, https://doi.org/10.1126/science:aaa0472.
B.-M. Bresolin, S.B. Hammouda, M. Sillanpää, Methylammonium iodo bismuthate perovskite (CH3NH3)3Bi2I9 as new effective visible lightresponsive photocatalyst for degradation of environment pollutants, J. Photochem. Photobiol., A 376 (2019) 116–126, https://doi.org/10.1016/j.jphotochem.2019.03.009.
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc. 131 (17) (2009) 6050–6051, https://doi.org/10.1021/ja809598r.
Muhd Sahrul Nizam Sahul Hameed, Farhana Aziz, Solvent engineering of lea free bismuth-based perovskite material for potential application of solar cell, Materials Today: Proceedings, Volume 46, Part 5, 2021, Pages 1837-1842, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2020.11.1018.
a) T. Krishnamoorthy, H. Ding, C. Yan, W. L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, S. G. Mhaisalkar, J. Mater. Chem. A 2015, 3, 23829; b) F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, Nat. Photonics 2014, 8, 489; c) M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, N. Mathews, Adv. Mater. 2014, 26, 7122.
S. Shao, J. Liu, G. Portale, H. H. Fang, G. R. Blake, G. H. t. Brink, L. J. A. Koster, M. A. Loi, Adv. Energy Mater. 2018, 8, 1702019.
P. C. Harikesh, H. K. Mulmudi, B. Ghosh, T. W. Goh, Y. T. Teng, K. Thirumal, M. Lockrey, K. Weber, T. M. Koh, S. Li, S. Mhaisalkar, N. Mathews, Chem. Mater. 2016, 28, 7496
H. Robert, B. Riley, O. Anna, S. Vladan, S. Samuel, W. Mark, K. Hyunho, A. Austin, P. John, K. Rachel, P. Jeremy, W. Evelyn, B. Moungi, B. Vladimir, B. Tonio, Chem. Eur. J. 2016, 22, 2605
M. Lyu, J.-H. Yun, M. Cai, Y. Jiao, P. V. Bernhardt, M. Zhang, Q. Wang, A. Du, H. Wang, G. Liu, L. Wang, Nano Res. 2016, 9, 692
B.-W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, E. M. J. Johansson, Adv. Mater. 2015, 27, 6806.
B. Ghosh, S. Chakraborty, H. Wei, C. Guet, S. Li, S. Mhaisalkar, N. Mathews, J. Phys. Chem. C 2017, 121, 17062; b) B. Ghosh, B. Wu, H. K. Mulmudi, C. Guet, K. Weber, T. C. Sum, S. G. Mhaisalkar, N. Mathews, ACS Appl. Mater. Interfaces 2018.
Y. Kim, Z. Yang, A. Jain, O. Voznyy, G.-H. Kim, M. Liu, L. N. Quan, F. P. García de Arquer, R. Comin, J. Z. Fan, E. H. Sargent, Angew. Chem. 2016, 128, 9738.
H. Zhu, M. Pan, M. B. Johansson, E. M. J. Johansson, ChemSusChem 2017, 10, 2592.
Ghosh, B., Wu, B., Guo, X., Harikesh, P., John, R., & Baikie, T. et al. (2018). Superior Performance of Silver Bismuth Iodide Photovoltaics Fabricated via Dynamic Hot-Casting Method under Ambient Conditions. Advanced Energy Materials, 8(33), 1802051. doi: 10.1002/aenm.201802051
Zhang F, Yang X, Cheng M, Wang W, Sun L. Boosting the efficiency and the stability of low cost perovskite solar cells by using CuPc nanorods as hole transport material and carbon as counter electrode. Nano Energy 2016;20: 108e16.
Ke W, Zhao D, Grice CR, Cimaroli AJ, Fang G, Yan Y. Efficient fully-vacuum processed perovskite solar cells using copper phthalocyanine as hole selective layers. J Mater Chem A 2015;3:23888e94.
Cho KT, Rakstys K, Cavazzini M, Orlandi S, Pozzi G, Nazeeruddin MK. Perovskite solar cells employing molecularly engineered Zn(II) phthalocyanines as hole-transporting materials. Nano Energy 2016. http://dx.doi.org/10.1016/j.nanoen.2016.09.008.
Yang G, Wang YL, Xu JJ, Lei HW, Chen C, Shan HQ, et al. A facile molecularly engineered copper (II) phthalocyanine as hole transport material for planar perovskite solar cells with enhanced performance and stability. Nano Energy 2016. http://dx.doi.org/10.1016/j.nanoen.2016.11.039.
Liu, X., Wang, Y., Rezaee, E., Chen, Q., Feng, Y., & Sun, X. et al. (2018). Tetra-Propyl-Substituted Copper (II) Phthalocyanine as Dopant-Free Hole Transporting Material for Planar Perovskite Solar Cells. Solar RRL, 2(7), 1800050. doi: 10.1002/solr.201800050
S. Wang, W. Yuan, Y.S. Meng, ACS Appl. Mater. Interf. 7 (2015) 24791, https://doi.org/10.1021/acsami.5b07703.
M. Freitag, Q. Daniel, M. Pazoki, K. Sveinbjörnsson, J.B. Zhang, L. C. Sun, A. Hagfeldt. G. Boschloo. Energy Environ. Sci. 8, 2634 (2015). https://doi.org/ 10. 1039/C5EE01204J.
Y.M. Cao, Y. Saygili, A. Ummadisingu, J. Teuscher, J.S. Luo, N. Pellet, F. Giordano, S.M. Zakeeruddin, J.-E. Moser, M. Freitag, A. Hagfeldt, M. Grätzel, Nat. Commun. 8 (2017) 15390, https://doi.org/10.1038/ncomms15390.
S. Chen, P. Liu, Y. Hua, Y.Y. Li, L. Kloo, X.Z. Wang, B. Ong, W.K. Wong, X.J. Zhu, ACS Appl. Mater. Interfaces 9 (2017) 13231, https://doi.org/10.1021/acsami.7b01904.
Chang-Dai Si, Xu-Dong Lv, Shi-Jia Long, Perovskite solar cells employing copper (I/II) porphyrin hole-transport material with enhanced performance, Inorganic Chemistry Communications, Volume 112, 2020, 107701, ISSN 1387-7003, https://doi.org/10.1016/j.inoche.2019.107701.
M.I. Hossain, F.H. Alharbi, N. Tabet, Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells, Sol. Energy 120 (2015) 370–380.
K.C. Wang, P.S. Shen, M.H. Li, S. Chen, M.W. Lin, P. Chen, T.F. Guo, Low- temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells, ACS Appl. Mater. Interfaces 6 (2014) 11851–11858.
V. Trifiletti, V. Roiati, S. Colella, R. Giannuzzi, L. De Marco, A. Rizzo, M Manca, A. Listorti, G. Gigli, NiO/MAPbI(3-x)Cl(x)/PCBM. a model case for an improved understanding of inverted mesoscopic solar cells, ACS Appl. Mater. Interfaces 7 (2015) 4283–4289.
W. Sun, S. Ye, H. Rao, Y. Li, Z. Liu, L. Xiao, Z. Chen, Z. Bian, C. Huang, Room-temperature and solution-processed copper iodide as the hole transport layer for inverted planar perovskite solar cells, Nanoscale 8 (2016) 15954–15960.
D.Y. Lee, S.I. Na, S.S. Kim, Graphene oxide/PEDOT:PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells, Nanoscale 8 (2016) 1513–1522.
J.A. Christians, R.C.M. Fung, P.V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells. improved hole conductivity with copper iodide, J. Am. Chem. Soc. 136 (2014) 758–764.
G.A. Sepalage, S. Meyer, A. Pascoe, A.D. Scully, F.Z. Huang, U. Bach, Y.B. Cheng, L. Spiccia, Copper(I) iodide as hole-conductor in planar perovskite solar cells: probing the origin of J-V hysteresis, Adv. Funct. Mater. 25 (2015) 5650–5661.
Wei-Dong Hu, Chunxiang Dall’Agnese, Xiao-Feng Wang, Gang Chen, Meng-Zhen Li, Jia-Xing Song, Ying-Jin Wei, Tsutomu Miyasaka, Copper iodide-PEDOT:PSS double hole transport layers for improved efficiency and stability in perovskite solar cells, Journal of Photochemistry and Photobiology A: Chemistry, Volume 357, 2018, Pages 36-40, ISSN 1010-6030, https://doi.org/10.1016/j.jphotochem.2018.02.018.
N.-G. Park, Perovskite solar cells: an emerging photovoltaic technology, Mater. Today 18 (2015) 65–72, https://doi.org/10.1016/j.mattod.2014.07.007.
P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K.Nazeeruddin, M. Grätzel, Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency, Nat Commun. 5 (2014), https://doi.org/10.1038/ncomms4834.
Z. Liu, A. Zhu, F. Cai, L. Tao, Y. Zhou, Z. Zhao, Q. Chen, Y.-B. Cheng, H. Zhou, Nickel oxide nanoparticles for efficient hole transport in p-i-n and n-i-p perovskite solar cells, J. Mater. Chem. A 5 (2017) 6597–6605, https://doi.org/10.1039/C7TA01593C.
M.I. Hossain, F.H. Alharbi, N. Tabet, Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells, Sol. Energy 120 (2015) 370–380, https://doi.org/10.1016/j.solener.2015.07.040.
N. Arora, M.I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S.M. Zakeeruddin, M. Grätzel, Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%, Science 80 (2017) (2017), https://doi.org/10.1126/science.aam5655.
W. Ke, G. Fang, H. Lei, P. Qin, H. Tao, W. Zeng, J. Wang, X. Zhao, An efficient and transparent copper sulfide nanosheet film counter electrode for bifacial quantum dot-sensitized solar cells, J. Power Sources 248 (2014) 809–815, https://doi.org/10.1016/j.jpowsour.2013.10.028.
K.-J. Huang, J.-Z. Zhang, Y. Fan, One-step solvothermal synthesis of different morphologies CuS nanosheets compared as supercapacitor electrode materials, J. J. Tirado et al. Applied Surface Science 478 (2019) 607–614 Alloys Compd. 625 (2015) 158–163, https://doi.org/10.1016/j.jallcom.2014.11.137.
Juan Tirado, Cristina Roldán-Carmona, Fabio A. Muñoz-Guerrero, Gemay Bonilla-Arboleda, Maryline Ralaiarisoa, Giulia Grancini, Valentin I.E. Queloz, Norbert Koch, Mohammad Khaja Nazeeruddin, Franklin Jaramillo,