Third-generation biodiesel development in Bangladesh: a review of recent trends, prospects, and economic analysis
Corresponding Author(s) : Itquan Hossen
Future Energy,
Vol. 4 No. 3 (2025): August 2025 Issue
Abstract
Researchers worldwide are seeking alternative sources of energy that can meet the future energy demand while significantly mitigating greenhouse gas (GHG) emissions. In addition, increasing the global energy demand at a faster rate, dependency on fossil fuels, and the price of fossil fuels are increasing at an alarming rate day by day. Amongst the options, biodiesel as an environmentally sustainable renewable fuel is considered to make a substantial contribution to the future transport energy demands locally and internationally. Among different biodiesel sources, advanced biodiesel feedstock, so-called 3rd generation biodiesel, which is mainly derived from microalgae, can be taken into account as a promising potential feedstock for biodiesel production due to their fast growth rates, high lipid content, high production rate, and ability to capture carbon dioxide. This paper discusses the selection of 3rd generation biodiesel, recent trends in microalgae-based biodiesel production, challenges in large-scale commercialization, and prospects for its development, particularly in the scenario of Bangladesh. The study estimates biodiesel can produce 10,000 liters per acre per year, with great potential for CO2 sequestration and job development. The study also looks at how Bangladesh's plentiful freshwater and saline water supplies might be used for microalgae farming in desolate areas. Microalgae biodiesel can be generated at 0.50–0.75 USD per liter, according to a cost study; government subsidies and economies of scale will help to further lower this figure. Microalgae biodiesel can help Bangladesh reach energy security, lower greenhouse gas emissions, and encourage sustainable economic development by being included in their renewable energy plan. This paper will provide a clear understanding of the potential usages of microalgae biodiesel as an alternative source to fossil fuel.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Li-Beisson and G. Peltier, “Third-generation biofuels: Current and future research on microalgal lipid biotechnology,” OCL - Oilseeds and fats, crops and lipids, vol. 20, no. 6, 2013, doi: 10.1051/ocl/2013031.
- G. Dragone, B. Fernandes, A. Vicente, and J. Teixeira, “Third generation biofuels from microalgae,” Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, no. January, pp. 1355–1366, 2010, [Online]. Available: http://repositorium.sdum.uminho.pt/handle/1822/16807
- L. Brennan and P. Owende, “Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products,” Renewable and Sustainable Energy Reviews, vol. 14, no. 2, pp. 557–577, 2010, doi: 10.1016/j.rser.2009.10.009.
- H. Chowdhury and B. Loganathan, “Third-generation biofuels from microalgae: a review,” Curr Opin Green Sustain Chem, vol. 20, pp. 39–44, 2019, doi: 10.1016/j.cogsc.2019.09.003.
- A. Callegari, S. Bolognesi, D. Cecconet, and A. Capodaglio, “Production technologies, current role, and future prospects of biofuels feedstocks: A state-of-the-art review,” Crit Rev Environ Sci Technol, vol. 50, pp. 384–436, Feb. 2020, doi: 10.1080/10643389.2019.1629801.
- K. Gaurav, K. Neeti, and R. Singh, “Microalgae-based biodiesel production and its challenges and future opportunities: A review,” Green Technologies and Sustainability, vol. 2, no. 1, p. 100060, 2024, doi: https://doi.org/10.1016/j.grets.2023.100060.
- S. V. Vassilev, D. Baxter, L. K. Andersen, C. G. Vassileva, and T. J. Morgan, “An overview of the organic and inorganic phase composition of biomass,” Fuel, vol. 94, pp. 1–33, 2012, doi: 10.1016/j.fuel.2011.09.030.
- S. Nanda, R. Rana, P. K. Sarangi, A. K. Dalai, and J. A. Kozinski, “A broad introduction to first-, second-, and third-generation biofuels,” Recent Advancements in Biofuels and Bioenergy Utilization, pp. 1–25, 2018, doi: 10.1007/978-981-13-1307-3_1.
- S. N. Naik, V. V. Goud, P. K. Rout, and A. K. Dalai, “Production of first and second generation biofuels: A comprehensive review,” Renewable and Sustainable Energy Reviews, vol. 14, no. 2, pp. 578–597, 2010, doi: 10.1016/j.rser.2009.10.003.
- M. M. K. Bhuiya, M. G. Rasul, M. M. K. Khan, N. Ashwath, and A. K. Azad, “Prospects of 2nd generation biodiesel as a sustainable fuel - Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies,” Renewable and Sustainable Energy Reviews, vol. 55, pp. 1109–1128, 2016, doi: 10.1016/j.rser.2015.04.163.
- Q. Kong, F. Yu, P. Chen, and R. Ruan, “High oil content microalgae selection for biodiesel production,” 2007 ASABE Annual International Meeting, Technical Papers, vol. 14 BOOK, no. 07, 2007, doi: 10.13031/2013.23441.
- B. Abdullah et al., “Fourth generation biofuel: A review on risks and mitigation strategies,” Renewable and Sustainable Energy Reviews, vol. 107, no. February, pp. 37–50, 2019, doi: 10.1016/j.rser.2019.02.018.
- S. Mahmud, A. S. M. R. Haider, S. T. Shahriar, S. Salehin, A. S. M. M. Hasan, and M. T. Johansson, “Bioethanol and biodiesel blended fuels — Feasibility analysis of biofuel feedstocks in Bangladesh,” Energy Reports, vol. 8, pp. 1741–1756, 2022, doi: 10.1016/j.egyr.2022.01.001.
- P. M. Schenk et al., “Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production,” Bioenergy Res, vol. 1, no. 1, pp. 20–43, 2008, doi: 10.1007/s12155-008-9008-8.
- G. Dragone, B. Fernandes, A. Vicente, and J. Teixeira, “Third generation biofuels from microalgae,” in Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, vol. 2, 2010, pp. 1355–1366.
- C. Ryan, “Cultivating Clean Energy, the Promise of Algae Biofuels,” Natural Resources Defense Council, no. October, p. 81, 2009, [Online]. Available: http://scholar.google.co.jp/scholar?hl=en&q=cultivating+clean+energy+the+promise+of+algae+biofuels&btnG=&as_sdt=1,5&as_sdtp=#0
- A. M. Kunjapur and R. B. Eldridge, “Photobioreactor design for commercial biofuel production from microalgae,” Ind Eng Chem Res, vol. 49, no. 8, pp. 3516–3526, 2010, doi: 10.1021/ie901459u.
- M. Kamil, K. M. Ramadan, O. I. Awad, T. K. Ibrahim, A. Inayat, and X. Ma, “Environmental impacts of biodiesel production from waste spent coffee grounds and its implementation in a compression ignition engine,” Science of the Total Environment, vol. 675, pp. 13–30, 2019.
- J. K. Daun, “Spectrophotometric analysis of chlorophyll pigments in canola and rapeseed oils,” Lipid Technol, vol. 24, no. 6, pp. 134–136, 2012.
- B. Bharathiraja, D. Yogendran, R. Ranjith Kumar, M. Chakravarthy, and S. Palani, “Biofuels from sewage sludge-A review,” Int J Chemtech Res, vol. 6, no. 9, pp. 4417–4427, 2014.
- P. C. Hossain, Sharif, Aishah Salleh , Amru Nasrulhaq Boyce, Mohd Naqiuddin, “Biodiesel Fuel Production from Algae as Renewable Energy Biotecnology Laboratory , Institute of Biological Sciences , Faculty of Science , University o,” Am J Biochem Biotechnol, vol. 4, no. 3, pp. 250–254, 2008.
- Y. Chisti, “Biodiesel from microalgae,” Biotechnol Adv, vol. 25, no. 3, pp. 294–306, 2007, doi: 10.1016/j.biotechadv.2007.02.001.
- J. N. Rosenberg, G. A. Oyler, L. Wilkinson, and M. J. Betenbaugh, “A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution,” Curr Opin Biotechnol, vol. 19, no. 5, pp. 430–436, 2008, doi: 10.1016/j.copbio.2008.07.008.
- J. Sheehan, T. Dunahay, J. Benemann, and P. Roessler, “A Look Back at the U . S . Department of Energy ’ s Aquatic Species Program — Biodiesel from Algae Office of Fuels Development,” Program, no. July, pp. 1–4, 1998.
- L. Lardon, A. Hélias, B. Sialve, J. P. Steyer, and O. Bernard, “Life-cycle assessment of biodiesel production from microalgae,” Environ Sci Technol, vol. 43, no. 17, pp. 6475–6481, 2009, doi: 10.1021/es900705j.
- A. Demirbaş, “Oily products from mosses and algae via pyrolysis,” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol. 28, no. 10, pp. 933–940, 2006, doi: 10.1080/009083190910389.
- B. Wang, Y. Li, N. Wu, and C. Q. Lan, “CO2 bio-mitigation using microalgae,” Appl Microbiol Biotechnol, vol. 79, no. 5, pp. 707–718, 2008, doi: 10.1007/s00253-008-1518-y.
- A. Demirbaş, “Current technologies for the thermo-conversion of biomass into fuels and chemicals,” Energy Sources, vol. 26, no. 8, pp. 715–730, 2004, doi: 10.1080/00908310490445562.
- Y. Huang, A. Hong, D. Zhang, and L. Li, “Comparison of cell rupturing by ozonation and ultrasonication for algal lipid extraction from Chlorella vulgaris,” Environmental Technology (United Kingdom), vol. 35, no. 8, pp. 931–937, 2014, doi: 10.1080/09593330.2013.856954.
- N. Mallick, “Biotechnological potential of immobilized algae for wastewater N, P and metal removal: A review,” BioMetals, vol. 15, no. 4, pp. 377–390, 2002, doi: 10.1023/A:1020238520948.
- F. K. El-Baz, M. S. Gad, S. M. Abdo, K. A. Abed, and I. A. Matter, “Performance and exhaust emissions of a diesel engine burning algal biodiesel blends,” International Journal of Mechanical and Mechatronics Engineering, vol. 16, no. 3, pp. 151–158, 2016.
- T. Mahmood, N. Hussain, A. Shahbaz, S. I. Mulla, H. M. N. Iqbal, and M. Bilal, “Sustainable production of biofuels from the algae-derived biomass,” Bioprocess Biosyst Eng, vol. 46, no. 8, pp. 1077–1097, 2023, doi: 10.1007/s00449-022-02796-8.
- T. Shirvani, X. Yan, O. R. Inderwildi, P. P. Edwards, and D. A. King, “Life cycle energy and greenhouse gas analysis for algae-derived biodiesel,” Energy Environ Sci, vol. 4, no. 10, pp. 3773–3778, 2011, doi: 10.1039/c1ee01791h.
- A. Demirbas, “Progress and recent trends in biofuels,” Prog Energy Combust Sci, vol. 33, no. 1, pp. 1–18, 2007, doi: 10.1016/j.pecs.2006.06.001.
- V. Lawlor and A. G. Olabi, “Review of scientific research regarding PPO, tallow and RVO as diesel engine fuel,” Fuel, vol. 145, pp. 25–38, 2015, doi: 10.1016/j.fuel.2014.12.034.
- D. Russo, M. Dassisti, V. Lawlor, and A. G. Olabi, “State of the art of biofuels from pure plant oil,” Renewable and Sustainable Energy Reviews, vol. 16, no. 6, pp. 4056–4070, 2012, doi: 10.1016/j.rser.2012.02.024.
- A. E. Atabani, A. S. Silitonga, I. A. Badruddin, T. M. I. Mahlia, H. H. Masjuki, and S. Mekhilef, “A comprehensive review on biodiesel as an alternative energy resource and its characteristics,” Renewable and Sustainable Energy Reviews, vol. 16, no. 4, pp. 2070–2093, 2012, doi: 10.1016/j.rser.2012.01.003.
- I. M. Atadashi, M. K. Aroua, and A. A. Aziz, “High quality biodiesel and its diesel engine application: A review,” Renewable and Sustainable Energy Reviews, vol. 14, no. 7, pp. 1999–2008, 2010, doi: 10.1016/j.rser.2010.03.020.
- J. Van Gerpen, “Biodiesel processing and production,” Fuel Processing Technology, vol. 86, no. 10, pp. 1097–1107, 2005, doi: 10.1016/j.fuproc.2004.11.005.
- M. A. Rahman, M. A. Aziz, R. A. Al-khulaidi, N. Sakib, and M. Islam, “Biodiesel production from microalgae Spirulina maxima by two step process: Optimization of process variable,” J Radiat Res Appl Sci, vol. 10, no. 2, pp. 140–147, 2017, doi: 10.1016/j.jrras.2017.02.004.
- M. Rahul S et al., “Insights about sustainable biodiesel production from microalgae biomass: A review,” Int J Energy Res, vol. 45, no. 12, pp. 17028–17056, 2021, doi: 10.1002/er.6138.
- Y. Guan, M. Deng, X. Yu, and W. Zhang, “Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis,” Biochem Eng J, vol. 19, no. 1, pp. 69–73, 2004, doi: 10.1016/j.bej.2003.10.006.
- M. Kouzu, T. Kasuno, M. Tajika, S. Yamanaka, and J. Hidaka, “Active phase of calcium oxide used as solid base catalyst for transesterification of soybean oil with refluxing methanol,” Appl Catal A Gen, vol. 334, no. 1–2, pp. 357–365, 2008, doi: 10.1016/j.apcata.2007.10.023.
- E. Suali and R. Sarbatly, “Conversion of microalgae to biofuel,” Renewable and Sustainable Energy Reviews, vol. 16, no. 6, pp. 4316–4342, 2012, doi: 10.1016/j.rser.2012.03.047.
- T. Tan, J. Lu, K. Nie, L. Deng, and F. Wang, “Biodiesel production with immobilized lipase: A review,” Biotechnol Adv, vol. 28, no. 5, pp. 628–634, 2010, doi: 10.1016/j.biotechadv.2010.05.012.
- W. Xie and N. Ma, “Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles,” Biomass Bioenergy, vol. 34, no. 6, pp. 890–896, 2010, doi: 10.1016/j.biombioe.2010.01.034.
- S. F. Ahmed et al., “Bio-oil from microalgae: Materials, production, technique, and future,” Energy Reports, vol. 10, no. May, pp. 3297–3314, 2023, doi: 10.1016/j.egyr.2023.09.068.
- P. G. del Río, J. S. Gomes-Dias, C. M. R. Rocha, A. Romaní, G. Garrote, and L. Domingues, “Recent trends on seaweed fractionation for liquid biofuels production,” Bioresour Technol, vol. 299, p. 122613, 2020, doi: 10.1016/j.biortech.2019.122613.
- A. Flores, X. Wang, and D. R. Nielsen, “Recent trends in integrated bioprocesses: aiding and expanding microbial biofuel/biochemical production,” Curr Opin Biotechnol, vol. 57, pp. 82–87, 2019, doi: 10.1016/j.copbio.2019.02.007.
- A. Raheem, W. A. K. G. Wan Azlina, Y. H. Taufiq Yap, M. K. Danquah, and R. Harun, “Thermochemical conversion of microalgal biomass for biofuel production,” Renewable and Sustainable Energy Reviews, vol. 49, pp. 990–999, 2015, doi: 10.1016/j.rser.2015.04.186.
- P. Halder and A. K. Azad, Recent trends and challenges of algal biofuel conversion technologies. Elsevier Ltd, 2019. doi: 10.1016/B978-0-08-102791-2.00007-6.
- R. E. H. Sims, W. Mabee, J. N. Saddler, and M. Taylor, “An overview of second generation biofuel technologies,” Bioresour Technol, vol. 101, no. 6, pp. 1570–1580, 2010, doi: 10.1016/j.biortech.2009.11.046.
- N. Rafa, S. F. Ahmed, I. A. Badruddin, M. Mofijur, and S. Kamangar, “Strategies to Produce Cost-Effective Third-Generation Biofuel From Microalgae,” Front Energy Res, vol. 9, no. September, pp. 1–11, 2021, doi: 10.3389/fenrg.2021.749968.
- M. H. Masud, M. Nuruzzaman, R. Ahamed, A. A. Ananno, and A. N. M. A. Tomal, “Renewable energy in Bangladesh: current situation and future prospect,” International Journal of Sustainable Energy, vol. 39, no. 2, pp. 132–175, 2020, doi: 10.1080/14786451.2019.1659270.
- Md. I. Kais, F. I. Chowdhury, and K. F. Shahriar, “Biodiesel from Microalgae as A Solution of Third World Energy Crisis,” Proceedings of the World Renewable Energy Congress – Sweden, 8–13 May, 2011, Linköping, Sweden, vol. 57, no. November 2011, pp. 192–199, 2011, doi: 10.3384/ecp11057192.
- W. Akram, A. Jafor, and A. Monem, “The Prospect of Sustainable Biofuel in Bangladesh: Challenges and Solution,” J Sustain Bioenergy Syst, vol. 09, no. 03, pp. 119–154, 2019, doi: 10.4236/jsbs.2019.93009.
- L. Gouveia and A. C. Oliveira, “Microalgae as a raw material for biofuels production,” J Ind Microbiol Biotechnol, vol. 36, no. 2, pp. 269–274, 2009.
- P. M. Schenk et al., “Second generation biofuels: high-efficiency microalgae for biodiesel production,” Bioenergy Res, vol. 1, pp. 20–43, 2008.
- H. Xu, X. Miao, and Q. Wu, “High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters,” J Biotechnol, vol. 126, no. 4, pp. 499–507, 2006.
- R. Halim, M. K. Danquah, and P. A. Webley, “Extraction of oil from microalgae for biodiesel production: A review,” Biotechnol Adv, vol. 30, no. 3, pp. 709–732, 2012, doi: https://doi.org/10.1016/j.biotechadv.2012.01.001.
- A. Banerjee, R. Sharma, Y. Chisti, and U. Banerjee, “Botryococcus braunii: a renewable source of hydrocarbons and other chemicals,” Crit Rev Biotechnol, vol. 22, no. 3, pp. 245–279, 2002.
- E. K. Nazloo, M. Danesh, M.-H. Sarrafzadeh, N. R. Moheimani, and H. Ennaceri, “Biomass and hydrocarbon production from Botryococcus braunii: A review focusing on cultivation methods,” Science of The Total Environment, vol. 926, p. 171734, 2024, doi: https://doi.org/10.1016/j.scitotenv.2024.171734.
- S. Karthikeyan, K. K., and A. and Prathima, “Quality analysis studies on biodiesel production of neochloris oleoabundans algae,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 40, no. 4, pp. 439–445, Feb. 2018, doi: 10.1080/15567036.2017.1422059.
- P. Hegel et al., “Biodiesel production from Neochloris oleoabundans by supercritical technology,” Chemical Engineering and Processing: Process Intensification, vol. 121, pp. 232–239, 2017, doi: https://doi.org/10.1016/j.cep.2017.08.018.
- B. George et al., “Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus – A potential strain for bio-fuel production,” Bioresour Technol, vol. 171, pp. 367–374, 2014, doi: https://doi.org/10.1016/j.biortech.2014.08.086.
- D. Gu, Q. Xiao, Y. Zhao, and X. Yu, “A low-cost technique for biodiesel production in Ankistrodesmus sp. EHY by using harvested microalgal effluent,” Science of The Total Environment, vol. 857, p. 159461, 2023, doi: https://doi.org/10.1016/j.scitotenv.2022.159461.
- E. Molina, M. E. Martínez, S. Sánchez, F. García, and A. Contreras, “Growth and biochemical composition with emphasis on the fatty acids of Tetraselmis sp.,” Appl Microbiol Biotechnol, vol. 36, no. 1, pp. 21–25, 1991, doi: 10.1007/BF00164692.
- A. Demirbaş, “Oily products from mosses and algae via pyrolysis,” Energy Sources, Part A, vol. 28, no. 10, pp. 933–940, 2006.
- R. T. Lorenz and G. R. Cysewski, “Commercial potential for Haematococcus microalgae as a natural source of astaxanthin,” Trends Biotechnol, vol. 18, no. 4, pp. 160–167, 2000.
- J. Fret, L. Roef, L. Diels, S. Tavernier, W. Vyverman, and M. Michiels, “Combining medium recirculation with alternating the microalga production strain: a laboratory and pilot scale cultivation test,” Algal Res, vol. 46, p. 101763, 2020.
- S. Manikandan, L. Sakthivel, A. Parthiban, R. C. Baiju, and S. Subramanian, “Biodiesel Production from Euglena Sanguinea Using Catalyst Support Extracted From Steel Slag-Optimization and Kinetic Study,” Catal Letters, vol. 154, no. 11, pp. 6049–6063, 2024, doi: 10.1007/s10562-024-04790-z.
- J.-M. Jung, J. Y. Kim, S. Jung, Y.-E. Choi, and E. E. Kwon, “Quantitative study on lipid productivity of Euglena gracilis and its biodiesel production according to the cultivation conditions,” J Clean Prod, vol. 291, p. 125218, 2021, doi: https://doi.org/10.1016/j.jclepro.2020.125218.
- S. S. Merchant et al., “The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions,” Science (1979), vol. 318, no. 5848, pp. 245–250, Oct. 2007, doi: 10.1126/science.1143609.
- P. Saccardo, A. Villaverde, and N. González-Montalbán, “Peptide-mediated DNA condensation for non-viral gene therapy,” Biotechnol Adv, vol. 27, no. 4, pp. 432–438, 2009.
- X.-N. Ma, T.-P. Chen, B. Yang, J. Liu, and F. Chen, “Lipid Production from Nannochloropsis,” 2016. doi: 10.3390/md14040061.
- S. M. Renaud, D. L. Parry, L.-V. Thinh, C. Kuo, A. Padovan, and N. Sammy, “Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture,” J Appl Phycol, vol. 3, no. 1, pp. 43–53, 1991, doi: 10.1007/BF00003918.
- A. Hosseini Tafreshi and M. Shariati, “Dunaliella biotechnology: methods and applications,” J Appl Microbiol, vol. 107, no. 1, pp. 14–35, Jul. 2009, doi: https://doi.org/10.1111/j.1365-2672.2009.04153.x.
- P. M. Schenk et al., “Second generation biofuels: high-efficiency microalgae for biodiesel production,” Bioenergy Res, vol. 1, pp. 20–43, 2008.
- Z. Yi, M. Xu, X. Di, S. Brynjolfsson, and W. Fu, “Exploring Valuable Lipids in Diatoms,” vol. 4, no. January, pp. 1–10, 2017, doi: 10.3389/fmars.2017.00017.
- G. d’Ippolito et al., “Potential of lipid metabolism in marine diatoms for biofuel production,” Biotechnol Biofuels, vol. 8, no. 1, p. 28, 2015, doi: 10.1186/s13068-015-0212-4.
- E. Molina Grima, J. A. Sánchez Pérez, J. L. García Sánchez, F. García Camacho, and D. López Alonso, “EPA from Isochrysis galbana. Growth conditions and productivity,” Process Biochemistry, vol. 27, no. 5, pp. 299–305, 1992, doi: https://doi.org/10.1016/0032-9592(92)85015-T.
- S. M. Mohy El-Din, “Accumulation of Lipids and Triglycerides in Isochrysis galbana Under Nutrient Stress,” Appl Biochem Biotechnol, vol. 189, no. 2, pp. 359–373, 2019, doi: 10.1007/s12010-019-02997-0.
- W. Eichenberger and C. Gribi, “Lipids of Pavlova lutheri: Cellular site and metabolic role of DGCC,” Phytochemistry, vol. 45, no. 8, pp. 1561–1567, 1997, doi: https://doi.org/10.1016/S0031-9422(97)00201-X.
- F. Maciel et al., “Optimization of Pavlova gyrans biomass production and the fatty acid profile using a two-step approach,” Sustainable Food Technology, vol. 1, no. 6, pp. 850–862, 2023, doi: 10.1039/d3fb00110e.
- F. Md. Yusoff, S. Banerjee, N. Nagao, Y. Imaizumi, M. Shariff, and T. Toda, “Use of Microalgae Pigments in Aquaculture BT - Pigments from Microalgae Handbook,” E. Jacob-Lopes, M. I. Queiroz, and L. Q. Zepka, Eds., Cham: Springer International Publishing, 2020, pp. 471–513. doi: 10.1007/978-3-030-50971-2_19.
- K. M. McGinnis, T. A. Dempster, and M. R. Sommerfeld, “Characterization of the growth and lipid content of the diatom Chaetoceros muelleri,” J Appl Phycol, vol. 9, no. 1, pp. 19–24, 1997, doi: 10.1023/A:1007972214462.
- N. Simon, A.-L. Cras, E. Foulon, and R. Lemée, “Diversity and evolution of marine phytoplankton,” C R Biol, vol. 332, no. 2, pp. 159–170, 2009, doi: https://doi.org/10.1016/j.crvi.2008.09.009.
- D. Sahin, E. Tas, and U. H. Altindag, “Enhancement of docosahexaenoic acid (DHA) production from Schizochytrium sp. S31 using different growth medium conditions,” AMB Express, vol. 8, no. 1, p. 7, 2018, doi: 10.1186/s13568-018-0540-4.
- X.-M. Sun et al., “Development of a cooperative two-factor adaptive-evolution method to enhance lipid production and prevent lipid peroxidation in Schizochytrium sp.,” Biotechnol Biofuels, vol. 11, no. 1, p. 65, 2018, doi: 10.1186/s13068-018-1065-4.
- S. (Malis) Arad and O. Levy-Ontman, “Red microalgal cell-wall polysaccharides: biotechnological aspects,” Curr Opin Biotechnol, vol. 21, no. 3, pp. 358–364, 2010, doi: https://doi.org/10.1016/j.copbio.2010.02.008.
- A. Vonshak, Z. Cohen, and A. Richmond, “The feasibility of mass cultivation of Porphyridium,” Biomass, vol. 8, no. 1, pp. 13–25, 1985, doi: https://doi.org/10.1016/0144-4565(85)90032-0.
- A. Gruber and P. G. Kroth, “Intracellular metabolic pathway distribution in diatoms and tools for genome-enabled experimental diatom research,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 372, no. 1728, p. 20160402, Jul. 2017, doi: 10.1098/rstb.2016.0402.
- L. Tirichine, A. Rastogi, and C. Bowler, “Recent progress in diatom genomics and epigenomics,” Curr Opin Plant Biol, vol. 36, pp. 46–55, 2017, doi: https://doi.org/10.1016/j.pbi.2017.02.001.
- E. V. Armbrust et al., “The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism,” Science (1979), vol. 306, no. 5693, pp. 79–86, 2004.
- A. Yousuf, Fundamentals of microalgae cultivation. Elsevier Inc., 2019. doi: 10.1016/B978-0-12-817536-1.00001-1.
- J. Riesbeck, P. Lingebrant, E. Sandberg, and C. Wang, “Energy System Optimization for a Scrap Based Steel Plant Using Mixed Integer Linear Programming,” Proceedings of the World Renewable Energy Congress – Sweden, 8–13 May, 2011, Linköping, Sweden, vol. 57, pp. 1676–1683, 2011, doi: 10.3384/ecp110571676.
- Y. Chisti, “Biodiesel from microalgae,” Biotechnol Adv, vol. 25, no. 3, pp. 294–306, 2007, doi: https://doi.org/10.1016/j.biotechadv.2007.02.001.
- N. Uduman, Y. Qi, M. K. Danquah, G. M. Forde, and A. Hoadley, “Dewatering of microalgal cultures: A major bottleneck to algae-based fuels,” Journal of Renewable and Sustainable Energy, vol. 2, no. 1, p. 12701, Jan. 2010, doi: 10.1063/1.3294480.
- A. Z. A. Saifullah, A. Karim, and R. Karim, “Advancement of Biodiesel in Bangladesh,” IOSR Journal of Engineering, vol. 06, no. 06, pp. 59–64, 2016.
- D. K. Roy and M. Z. Abedin, “Potentiality of biodiesel and bioethanol production from feedstock in Bangladesh: A review,” Heliyon, vol. 8, no. 11, p. e11213, 2022, doi: 10.1016/j.heliyon.2022.e11213.
- J. W. Richardson, M. D. Johnson, and J. L. Outlaw, “Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest,” Algal Res, vol. 1, no. 1, pp. 93–100, 2012, doi: https://doi.org/10.1016/j.algal.2012.04.001.
References
Y. Li-Beisson and G. Peltier, “Third-generation biofuels: Current and future research on microalgal lipid biotechnology,” OCL - Oilseeds and fats, crops and lipids, vol. 20, no. 6, 2013, doi: 10.1051/ocl/2013031.
G. Dragone, B. Fernandes, A. Vicente, and J. Teixeira, “Third generation biofuels from microalgae,” Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, no. January, pp. 1355–1366, 2010, [Online]. Available: http://repositorium.sdum.uminho.pt/handle/1822/16807
L. Brennan and P. Owende, “Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products,” Renewable and Sustainable Energy Reviews, vol. 14, no. 2, pp. 557–577, 2010, doi: 10.1016/j.rser.2009.10.009.
H. Chowdhury and B. Loganathan, “Third-generation biofuels from microalgae: a review,” Curr Opin Green Sustain Chem, vol. 20, pp. 39–44, 2019, doi: 10.1016/j.cogsc.2019.09.003.
A. Callegari, S. Bolognesi, D. Cecconet, and A. Capodaglio, “Production technologies, current role, and future prospects of biofuels feedstocks: A state-of-the-art review,” Crit Rev Environ Sci Technol, vol. 50, pp. 384–436, Feb. 2020, doi: 10.1080/10643389.2019.1629801.
K. Gaurav, K. Neeti, and R. Singh, “Microalgae-based biodiesel production and its challenges and future opportunities: A review,” Green Technologies and Sustainability, vol. 2, no. 1, p. 100060, 2024, doi: https://doi.org/10.1016/j.grets.2023.100060.
S. V. Vassilev, D. Baxter, L. K. Andersen, C. G. Vassileva, and T. J. Morgan, “An overview of the organic and inorganic phase composition of biomass,” Fuel, vol. 94, pp. 1–33, 2012, doi: 10.1016/j.fuel.2011.09.030.
S. Nanda, R. Rana, P. K. Sarangi, A. K. Dalai, and J. A. Kozinski, “A broad introduction to first-, second-, and third-generation biofuels,” Recent Advancements in Biofuels and Bioenergy Utilization, pp. 1–25, 2018, doi: 10.1007/978-981-13-1307-3_1.
S. N. Naik, V. V. Goud, P. K. Rout, and A. K. Dalai, “Production of first and second generation biofuels: A comprehensive review,” Renewable and Sustainable Energy Reviews, vol. 14, no. 2, pp. 578–597, 2010, doi: 10.1016/j.rser.2009.10.003.
M. M. K. Bhuiya, M. G. Rasul, M. M. K. Khan, N. Ashwath, and A. K. Azad, “Prospects of 2nd generation biodiesel as a sustainable fuel - Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies,” Renewable and Sustainable Energy Reviews, vol. 55, pp. 1109–1128, 2016, doi: 10.1016/j.rser.2015.04.163.
Q. Kong, F. Yu, P. Chen, and R. Ruan, “High oil content microalgae selection for biodiesel production,” 2007 ASABE Annual International Meeting, Technical Papers, vol. 14 BOOK, no. 07, 2007, doi: 10.13031/2013.23441.
B. Abdullah et al., “Fourth generation biofuel: A review on risks and mitigation strategies,” Renewable and Sustainable Energy Reviews, vol. 107, no. February, pp. 37–50, 2019, doi: 10.1016/j.rser.2019.02.018.
S. Mahmud, A. S. M. R. Haider, S. T. Shahriar, S. Salehin, A. S. M. M. Hasan, and M. T. Johansson, “Bioethanol and biodiesel blended fuels — Feasibility analysis of biofuel feedstocks in Bangladesh,” Energy Reports, vol. 8, pp. 1741–1756, 2022, doi: 10.1016/j.egyr.2022.01.001.
P. M. Schenk et al., “Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production,” Bioenergy Res, vol. 1, no. 1, pp. 20–43, 2008, doi: 10.1007/s12155-008-9008-8.
G. Dragone, B. Fernandes, A. Vicente, and J. Teixeira, “Third generation biofuels from microalgae,” in Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, vol. 2, 2010, pp. 1355–1366.
C. Ryan, “Cultivating Clean Energy, the Promise of Algae Biofuels,” Natural Resources Defense Council, no. October, p. 81, 2009, [Online]. Available: http://scholar.google.co.jp/scholar?hl=en&q=cultivating+clean+energy+the+promise+of+algae+biofuels&btnG=&as_sdt=1,5&as_sdtp=#0
A. M. Kunjapur and R. B. Eldridge, “Photobioreactor design for commercial biofuel production from microalgae,” Ind Eng Chem Res, vol. 49, no. 8, pp. 3516–3526, 2010, doi: 10.1021/ie901459u.
M. Kamil, K. M. Ramadan, O. I. Awad, T. K. Ibrahim, A. Inayat, and X. Ma, “Environmental impacts of biodiesel production from waste spent coffee grounds and its implementation in a compression ignition engine,” Science of the Total Environment, vol. 675, pp. 13–30, 2019.
J. K. Daun, “Spectrophotometric analysis of chlorophyll pigments in canola and rapeseed oils,” Lipid Technol, vol. 24, no. 6, pp. 134–136, 2012.
B. Bharathiraja, D. Yogendran, R. Ranjith Kumar, M. Chakravarthy, and S. Palani, “Biofuels from sewage sludge-A review,” Int J Chemtech Res, vol. 6, no. 9, pp. 4417–4427, 2014.
P. C. Hossain, Sharif, Aishah Salleh , Amru Nasrulhaq Boyce, Mohd Naqiuddin, “Biodiesel Fuel Production from Algae as Renewable Energy Biotecnology Laboratory , Institute of Biological Sciences , Faculty of Science , University o,” Am J Biochem Biotechnol, vol. 4, no. 3, pp. 250–254, 2008.
Y. Chisti, “Biodiesel from microalgae,” Biotechnol Adv, vol. 25, no. 3, pp. 294–306, 2007, doi: 10.1016/j.biotechadv.2007.02.001.
J. N. Rosenberg, G. A. Oyler, L. Wilkinson, and M. J. Betenbaugh, “A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution,” Curr Opin Biotechnol, vol. 19, no. 5, pp. 430–436, 2008, doi: 10.1016/j.copbio.2008.07.008.
J. Sheehan, T. Dunahay, J. Benemann, and P. Roessler, “A Look Back at the U . S . Department of Energy ’ s Aquatic Species Program — Biodiesel from Algae Office of Fuels Development,” Program, no. July, pp. 1–4, 1998.
L. Lardon, A. Hélias, B. Sialve, J. P. Steyer, and O. Bernard, “Life-cycle assessment of biodiesel production from microalgae,” Environ Sci Technol, vol. 43, no. 17, pp. 6475–6481, 2009, doi: 10.1021/es900705j.
A. Demirbaş, “Oily products from mosses and algae via pyrolysis,” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol. 28, no. 10, pp. 933–940, 2006, doi: 10.1080/009083190910389.
B. Wang, Y. Li, N. Wu, and C. Q. Lan, “CO2 bio-mitigation using microalgae,” Appl Microbiol Biotechnol, vol. 79, no. 5, pp. 707–718, 2008, doi: 10.1007/s00253-008-1518-y.
A. Demirbaş, “Current technologies for the thermo-conversion of biomass into fuels and chemicals,” Energy Sources, vol. 26, no. 8, pp. 715–730, 2004, doi: 10.1080/00908310490445562.
Y. Huang, A. Hong, D. Zhang, and L. Li, “Comparison of cell rupturing by ozonation and ultrasonication for algal lipid extraction from Chlorella vulgaris,” Environmental Technology (United Kingdom), vol. 35, no. 8, pp. 931–937, 2014, doi: 10.1080/09593330.2013.856954.
N. Mallick, “Biotechnological potential of immobilized algae for wastewater N, P and metal removal: A review,” BioMetals, vol. 15, no. 4, pp. 377–390, 2002, doi: 10.1023/A:1020238520948.
F. K. El-Baz, M. S. Gad, S. M. Abdo, K. A. Abed, and I. A. Matter, “Performance and exhaust emissions of a diesel engine burning algal biodiesel blends,” International Journal of Mechanical and Mechatronics Engineering, vol. 16, no. 3, pp. 151–158, 2016.
T. Mahmood, N. Hussain, A. Shahbaz, S. I. Mulla, H. M. N. Iqbal, and M. Bilal, “Sustainable production of biofuels from the algae-derived biomass,” Bioprocess Biosyst Eng, vol. 46, no. 8, pp. 1077–1097, 2023, doi: 10.1007/s00449-022-02796-8.
T. Shirvani, X. Yan, O. R. Inderwildi, P. P. Edwards, and D. A. King, “Life cycle energy and greenhouse gas analysis for algae-derived biodiesel,” Energy Environ Sci, vol. 4, no. 10, pp. 3773–3778, 2011, doi: 10.1039/c1ee01791h.
A. Demirbas, “Progress and recent trends in biofuels,” Prog Energy Combust Sci, vol. 33, no. 1, pp. 1–18, 2007, doi: 10.1016/j.pecs.2006.06.001.
V. Lawlor and A. G. Olabi, “Review of scientific research regarding PPO, tallow and RVO as diesel engine fuel,” Fuel, vol. 145, pp. 25–38, 2015, doi: 10.1016/j.fuel.2014.12.034.
D. Russo, M. Dassisti, V. Lawlor, and A. G. Olabi, “State of the art of biofuels from pure plant oil,” Renewable and Sustainable Energy Reviews, vol. 16, no. 6, pp. 4056–4070, 2012, doi: 10.1016/j.rser.2012.02.024.
A. E. Atabani, A. S. Silitonga, I. A. Badruddin, T. M. I. Mahlia, H. H. Masjuki, and S. Mekhilef, “A comprehensive review on biodiesel as an alternative energy resource and its characteristics,” Renewable and Sustainable Energy Reviews, vol. 16, no. 4, pp. 2070–2093, 2012, doi: 10.1016/j.rser.2012.01.003.
I. M. Atadashi, M. K. Aroua, and A. A. Aziz, “High quality biodiesel and its diesel engine application: A review,” Renewable and Sustainable Energy Reviews, vol. 14, no. 7, pp. 1999–2008, 2010, doi: 10.1016/j.rser.2010.03.020.
J. Van Gerpen, “Biodiesel processing and production,” Fuel Processing Technology, vol. 86, no. 10, pp. 1097–1107, 2005, doi: 10.1016/j.fuproc.2004.11.005.
M. A. Rahman, M. A. Aziz, R. A. Al-khulaidi, N. Sakib, and M. Islam, “Biodiesel production from microalgae Spirulina maxima by two step process: Optimization of process variable,” J Radiat Res Appl Sci, vol. 10, no. 2, pp. 140–147, 2017, doi: 10.1016/j.jrras.2017.02.004.
M. Rahul S et al., “Insights about sustainable biodiesel production from microalgae biomass: A review,” Int J Energy Res, vol. 45, no. 12, pp. 17028–17056, 2021, doi: 10.1002/er.6138.
Y. Guan, M. Deng, X. Yu, and W. Zhang, “Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis,” Biochem Eng J, vol. 19, no. 1, pp. 69–73, 2004, doi: 10.1016/j.bej.2003.10.006.
M. Kouzu, T. Kasuno, M. Tajika, S. Yamanaka, and J. Hidaka, “Active phase of calcium oxide used as solid base catalyst for transesterification of soybean oil with refluxing methanol,” Appl Catal A Gen, vol. 334, no. 1–2, pp. 357–365, 2008, doi: 10.1016/j.apcata.2007.10.023.
E. Suali and R. Sarbatly, “Conversion of microalgae to biofuel,” Renewable and Sustainable Energy Reviews, vol. 16, no. 6, pp. 4316–4342, 2012, doi: 10.1016/j.rser.2012.03.047.
T. Tan, J. Lu, K. Nie, L. Deng, and F. Wang, “Biodiesel production with immobilized lipase: A review,” Biotechnol Adv, vol. 28, no. 5, pp. 628–634, 2010, doi: 10.1016/j.biotechadv.2010.05.012.
W. Xie and N. Ma, “Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles,” Biomass Bioenergy, vol. 34, no. 6, pp. 890–896, 2010, doi: 10.1016/j.biombioe.2010.01.034.
S. F. Ahmed et al., “Bio-oil from microalgae: Materials, production, technique, and future,” Energy Reports, vol. 10, no. May, pp. 3297–3314, 2023, doi: 10.1016/j.egyr.2023.09.068.
P. G. del Río, J. S. Gomes-Dias, C. M. R. Rocha, A. Romaní, G. Garrote, and L. Domingues, “Recent trends on seaweed fractionation for liquid biofuels production,” Bioresour Technol, vol. 299, p. 122613, 2020, doi: 10.1016/j.biortech.2019.122613.
A. Flores, X. Wang, and D. R. Nielsen, “Recent trends in integrated bioprocesses: aiding and expanding microbial biofuel/biochemical production,” Curr Opin Biotechnol, vol. 57, pp. 82–87, 2019, doi: 10.1016/j.copbio.2019.02.007.
A. Raheem, W. A. K. G. Wan Azlina, Y. H. Taufiq Yap, M. K. Danquah, and R. Harun, “Thermochemical conversion of microalgal biomass for biofuel production,” Renewable and Sustainable Energy Reviews, vol. 49, pp. 990–999, 2015, doi: 10.1016/j.rser.2015.04.186.
P. Halder and A. K. Azad, Recent trends and challenges of algal biofuel conversion technologies. Elsevier Ltd, 2019. doi: 10.1016/B978-0-08-102791-2.00007-6.
R. E. H. Sims, W. Mabee, J. N. Saddler, and M. Taylor, “An overview of second generation biofuel technologies,” Bioresour Technol, vol. 101, no. 6, pp. 1570–1580, 2010, doi: 10.1016/j.biortech.2009.11.046.
N. Rafa, S. F. Ahmed, I. A. Badruddin, M. Mofijur, and S. Kamangar, “Strategies to Produce Cost-Effective Third-Generation Biofuel From Microalgae,” Front Energy Res, vol. 9, no. September, pp. 1–11, 2021, doi: 10.3389/fenrg.2021.749968.
M. H. Masud, M. Nuruzzaman, R. Ahamed, A. A. Ananno, and A. N. M. A. Tomal, “Renewable energy in Bangladesh: current situation and future prospect,” International Journal of Sustainable Energy, vol. 39, no. 2, pp. 132–175, 2020, doi: 10.1080/14786451.2019.1659270.
Md. I. Kais, F. I. Chowdhury, and K. F. Shahriar, “Biodiesel from Microalgae as A Solution of Third World Energy Crisis,” Proceedings of the World Renewable Energy Congress – Sweden, 8–13 May, 2011, Linköping, Sweden, vol. 57, no. November 2011, pp. 192–199, 2011, doi: 10.3384/ecp11057192.
W. Akram, A. Jafor, and A. Monem, “The Prospect of Sustainable Biofuel in Bangladesh: Challenges and Solution,” J Sustain Bioenergy Syst, vol. 09, no. 03, pp. 119–154, 2019, doi: 10.4236/jsbs.2019.93009.
L. Gouveia and A. C. Oliveira, “Microalgae as a raw material for biofuels production,” J Ind Microbiol Biotechnol, vol. 36, no. 2, pp. 269–274, 2009.
P. M. Schenk et al., “Second generation biofuels: high-efficiency microalgae for biodiesel production,” Bioenergy Res, vol. 1, pp. 20–43, 2008.
H. Xu, X. Miao, and Q. Wu, “High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters,” J Biotechnol, vol. 126, no. 4, pp. 499–507, 2006.
R. Halim, M. K. Danquah, and P. A. Webley, “Extraction of oil from microalgae for biodiesel production: A review,” Biotechnol Adv, vol. 30, no. 3, pp. 709–732, 2012, doi: https://doi.org/10.1016/j.biotechadv.2012.01.001.
A. Banerjee, R. Sharma, Y. Chisti, and U. Banerjee, “Botryococcus braunii: a renewable source of hydrocarbons and other chemicals,” Crit Rev Biotechnol, vol. 22, no. 3, pp. 245–279, 2002.
E. K. Nazloo, M. Danesh, M.-H. Sarrafzadeh, N. R. Moheimani, and H. Ennaceri, “Biomass and hydrocarbon production from Botryococcus braunii: A review focusing on cultivation methods,” Science of The Total Environment, vol. 926, p. 171734, 2024, doi: https://doi.org/10.1016/j.scitotenv.2024.171734.
S. Karthikeyan, K. K., and A. and Prathima, “Quality analysis studies on biodiesel production of neochloris oleoabundans algae,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 40, no. 4, pp. 439–445, Feb. 2018, doi: 10.1080/15567036.2017.1422059.
P. Hegel et al., “Biodiesel production from Neochloris oleoabundans by supercritical technology,” Chemical Engineering and Processing: Process Intensification, vol. 121, pp. 232–239, 2017, doi: https://doi.org/10.1016/j.cep.2017.08.018.
B. George et al., “Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus – A potential strain for bio-fuel production,” Bioresour Technol, vol. 171, pp. 367–374, 2014, doi: https://doi.org/10.1016/j.biortech.2014.08.086.
D. Gu, Q. Xiao, Y. Zhao, and X. Yu, “A low-cost technique for biodiesel production in Ankistrodesmus sp. EHY by using harvested microalgal effluent,” Science of The Total Environment, vol. 857, p. 159461, 2023, doi: https://doi.org/10.1016/j.scitotenv.2022.159461.
E. Molina, M. E. Martínez, S. Sánchez, F. García, and A. Contreras, “Growth and biochemical composition with emphasis on the fatty acids of Tetraselmis sp.,” Appl Microbiol Biotechnol, vol. 36, no. 1, pp. 21–25, 1991, doi: 10.1007/BF00164692.
A. Demirbaş, “Oily products from mosses and algae via pyrolysis,” Energy Sources, Part A, vol. 28, no. 10, pp. 933–940, 2006.
R. T. Lorenz and G. R. Cysewski, “Commercial potential for Haematococcus microalgae as a natural source of astaxanthin,” Trends Biotechnol, vol. 18, no. 4, pp. 160–167, 2000.
J. Fret, L. Roef, L. Diels, S. Tavernier, W. Vyverman, and M. Michiels, “Combining medium recirculation with alternating the microalga production strain: a laboratory and pilot scale cultivation test,” Algal Res, vol. 46, p. 101763, 2020.
S. Manikandan, L. Sakthivel, A. Parthiban, R. C. Baiju, and S. Subramanian, “Biodiesel Production from Euglena Sanguinea Using Catalyst Support Extracted From Steel Slag-Optimization and Kinetic Study,” Catal Letters, vol. 154, no. 11, pp. 6049–6063, 2024, doi: 10.1007/s10562-024-04790-z.
J.-M. Jung, J. Y. Kim, S. Jung, Y.-E. Choi, and E. E. Kwon, “Quantitative study on lipid productivity of Euglena gracilis and its biodiesel production according to the cultivation conditions,” J Clean Prod, vol. 291, p. 125218, 2021, doi: https://doi.org/10.1016/j.jclepro.2020.125218.
S. S. Merchant et al., “The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions,” Science (1979), vol. 318, no. 5848, pp. 245–250, Oct. 2007, doi: 10.1126/science.1143609.
P. Saccardo, A. Villaverde, and N. González-Montalbán, “Peptide-mediated DNA condensation for non-viral gene therapy,” Biotechnol Adv, vol. 27, no. 4, pp. 432–438, 2009.
X.-N. Ma, T.-P. Chen, B. Yang, J. Liu, and F. Chen, “Lipid Production from Nannochloropsis,” 2016. doi: 10.3390/md14040061.
S. M. Renaud, D. L. Parry, L.-V. Thinh, C. Kuo, A. Padovan, and N. Sammy, “Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture,” J Appl Phycol, vol. 3, no. 1, pp. 43–53, 1991, doi: 10.1007/BF00003918.
A. Hosseini Tafreshi and M. Shariati, “Dunaliella biotechnology: methods and applications,” J Appl Microbiol, vol. 107, no. 1, pp. 14–35, Jul. 2009, doi: https://doi.org/10.1111/j.1365-2672.2009.04153.x.
P. M. Schenk et al., “Second generation biofuels: high-efficiency microalgae for biodiesel production,” Bioenergy Res, vol. 1, pp. 20–43, 2008.
Z. Yi, M. Xu, X. Di, S. Brynjolfsson, and W. Fu, “Exploring Valuable Lipids in Diatoms,” vol. 4, no. January, pp. 1–10, 2017, doi: 10.3389/fmars.2017.00017.
G. d’Ippolito et al., “Potential of lipid metabolism in marine diatoms for biofuel production,” Biotechnol Biofuels, vol. 8, no. 1, p. 28, 2015, doi: 10.1186/s13068-015-0212-4.
E. Molina Grima, J. A. Sánchez Pérez, J. L. García Sánchez, F. García Camacho, and D. López Alonso, “EPA from Isochrysis galbana. Growth conditions and productivity,” Process Biochemistry, vol. 27, no. 5, pp. 299–305, 1992, doi: https://doi.org/10.1016/0032-9592(92)85015-T.
S. M. Mohy El-Din, “Accumulation of Lipids and Triglycerides in Isochrysis galbana Under Nutrient Stress,” Appl Biochem Biotechnol, vol. 189, no. 2, pp. 359–373, 2019, doi: 10.1007/s12010-019-02997-0.
W. Eichenberger and C. Gribi, “Lipids of Pavlova lutheri: Cellular site and metabolic role of DGCC,” Phytochemistry, vol. 45, no. 8, pp. 1561–1567, 1997, doi: https://doi.org/10.1016/S0031-9422(97)00201-X.
F. Maciel et al., “Optimization of Pavlova gyrans biomass production and the fatty acid profile using a two-step approach,” Sustainable Food Technology, vol. 1, no. 6, pp. 850–862, 2023, doi: 10.1039/d3fb00110e.
F. Md. Yusoff, S. Banerjee, N. Nagao, Y. Imaizumi, M. Shariff, and T. Toda, “Use of Microalgae Pigments in Aquaculture BT - Pigments from Microalgae Handbook,” E. Jacob-Lopes, M. I. Queiroz, and L. Q. Zepka, Eds., Cham: Springer International Publishing, 2020, pp. 471–513. doi: 10.1007/978-3-030-50971-2_19.
K. M. McGinnis, T. A. Dempster, and M. R. Sommerfeld, “Characterization of the growth and lipid content of the diatom Chaetoceros muelleri,” J Appl Phycol, vol. 9, no. 1, pp. 19–24, 1997, doi: 10.1023/A:1007972214462.
N. Simon, A.-L. Cras, E. Foulon, and R. Lemée, “Diversity and evolution of marine phytoplankton,” C R Biol, vol. 332, no. 2, pp. 159–170, 2009, doi: https://doi.org/10.1016/j.crvi.2008.09.009.
D. Sahin, E. Tas, and U. H. Altindag, “Enhancement of docosahexaenoic acid (DHA) production from Schizochytrium sp. S31 using different growth medium conditions,” AMB Express, vol. 8, no. 1, p. 7, 2018, doi: 10.1186/s13568-018-0540-4.
X.-M. Sun et al., “Development of a cooperative two-factor adaptive-evolution method to enhance lipid production and prevent lipid peroxidation in Schizochytrium sp.,” Biotechnol Biofuels, vol. 11, no. 1, p. 65, 2018, doi: 10.1186/s13068-018-1065-4.
S. (Malis) Arad and O. Levy-Ontman, “Red microalgal cell-wall polysaccharides: biotechnological aspects,” Curr Opin Biotechnol, vol. 21, no. 3, pp. 358–364, 2010, doi: https://doi.org/10.1016/j.copbio.2010.02.008.
A. Vonshak, Z. Cohen, and A. Richmond, “The feasibility of mass cultivation of Porphyridium,” Biomass, vol. 8, no. 1, pp. 13–25, 1985, doi: https://doi.org/10.1016/0144-4565(85)90032-0.
A. Gruber and P. G. Kroth, “Intracellular metabolic pathway distribution in diatoms and tools for genome-enabled experimental diatom research,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 372, no. 1728, p. 20160402, Jul. 2017, doi: 10.1098/rstb.2016.0402.
L. Tirichine, A. Rastogi, and C. Bowler, “Recent progress in diatom genomics and epigenomics,” Curr Opin Plant Biol, vol. 36, pp. 46–55, 2017, doi: https://doi.org/10.1016/j.pbi.2017.02.001.
E. V. Armbrust et al., “The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism,” Science (1979), vol. 306, no. 5693, pp. 79–86, 2004.
A. Yousuf, Fundamentals of microalgae cultivation. Elsevier Inc., 2019. doi: 10.1016/B978-0-12-817536-1.00001-1.
J. Riesbeck, P. Lingebrant, E. Sandberg, and C. Wang, “Energy System Optimization for a Scrap Based Steel Plant Using Mixed Integer Linear Programming,” Proceedings of the World Renewable Energy Congress – Sweden, 8–13 May, 2011, Linköping, Sweden, vol. 57, pp. 1676–1683, 2011, doi: 10.3384/ecp110571676.
Y. Chisti, “Biodiesel from microalgae,” Biotechnol Adv, vol. 25, no. 3, pp. 294–306, 2007, doi: https://doi.org/10.1016/j.biotechadv.2007.02.001.
N. Uduman, Y. Qi, M. K. Danquah, G. M. Forde, and A. Hoadley, “Dewatering of microalgal cultures: A major bottleneck to algae-based fuels,” Journal of Renewable and Sustainable Energy, vol. 2, no. 1, p. 12701, Jan. 2010, doi: 10.1063/1.3294480.
A. Z. A. Saifullah, A. Karim, and R. Karim, “Advancement of Biodiesel in Bangladesh,” IOSR Journal of Engineering, vol. 06, no. 06, pp. 59–64, 2016.
D. K. Roy and M. Z. Abedin, “Potentiality of biodiesel and bioethanol production from feedstock in Bangladesh: A review,” Heliyon, vol. 8, no. 11, p. e11213, 2022, doi: 10.1016/j.heliyon.2022.e11213.
J. W. Richardson, M. D. Johnson, and J. L. Outlaw, “Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest,” Algal Res, vol. 1, no. 1, pp. 93–100, 2012, doi: https://doi.org/10.1016/j.algal.2012.04.001.