An extensive examination of the potential of waste cooking oil biodiesel in Bangladesh
Corresponding Author(s) : Nure Alam Siddiki
Future Energy,
Vol. 4 No. 4 (2025): November 2025 Issue
Abstract
Waste cooking oil (WCO) has gained attention as a valuable resource for biodiesel production due to its availability and potential for waste management. This study examines the viability of WCO as a biodiesel feedstock in Bangladesh, addressing the increasing demand for sustainable energy alternatives. This paper explores multiple facets of WCO biodiesel, encompassing feedstock types, pretreatment techniques, and the production process. The study analyzes the physicochemical properties, emission characteristics, performance, and combustion behavior of biodiesel derived from WCO. The findings indicate that WCO biodiesel presents considerable potential as an economically viable and environmentally sustainable alternative fuel for diesel engines in Bangladesh. Challenges in WCO collection, commercialization, and public awareness must be addressed to realize its full potential. The paper concludes by proposing avenues for further research in Bangladesh, emphasizing the enhancement of collection systems, the refinement of policy frameworks, and the optimization of conversion technologies to facilitate the broader adoption of WCO biodiesel.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Rocha-Meneses et al., “Recent advances on biodiesel production from waste cooking oil (WCO): A review of reactors, catalysts, and optimization techniques impacting the production,” Fuel (London, England), vol. 348, no. 128514, p. 128514, 2023, doi: 10.1016/j.fuel.2023.128514.
- S. Adams, E. Boateng, and A. O. Acheampong, “Transport energy consumption and environmental quality: Does urbanization matter?,” Sci. Total Environ., vol. 744, p. 140617, Nov. 2020, doi: 10.1016/j.scitotenv.2020.140617.
- A. M. Ashraful et al., “Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: A review,” Energy Convers. Manag., vol. 80, pp. 202–228, 2014, doi: 10.1016/j.enconman.2014.01.037.
- “Annual energy report 2020-2021. ,” Bangladesh Power Development Board (BPDB). . Accessed: Feb. 03, 2025. [Online]. Available: https://bpdb.portal.gov.bd/sites/default/files/files/bpdb.portal.gov.bd/annual_reports/7b792f67_bf50_4b3d_9bef_8f9b568005c9/2022-10-18-05-55-f1971a327c2aebfd37f6f9a8e723d1fb.pdf
- S. Mohazzem Hossain, S. Biswas, and M. Raihan Uddin, “Sustainable energy transition in Bangladesh: Challenges and pathways for the future,” Eng. Reports, vol. 6, no. 1, pp. 1–26, 2024, doi: 10.1002/eng2.12752.
- P. et al. Friedlingstein, “Global Carbon Budget 2023,” Earth Syst. Sci. Data, vol. 15, no. 12, pp. 5301–5369, 2023, doi: 10.5194/ESSD-15-5301-2023.
- A. Adnan, S. Mahmud, M. R. Uddin, A. Modi, M. M. Ehsan, and S. Salehin, “Energy, Exergy, Exergoeconomic, and environmental (4E) analyses of thermal power plants for municipal solid waste to energy application in Bangladesh,” Waste Manag., vol. 134, pp. 136–148, 2021, doi: 10.1016/j.wasman.2021.08.006.
- L. Eckstein, David ; Künzel, Vera ; Schäfer, “Global Climate Index, 2021.” Accessed: Feb. 03, 2025. [Online]. Available: https://www.germanwatch.org/sites/default/files/Global Climate Risk Index 2021_2.pdf
- G. of the P. R. of B. Ministry of Environment, Forest and Climate Change, “Climate Change Initiatives of Bangladesh Achieving Climate Resilience Ministry of Environment”.
- S. Muralidharan and S. M. Khasru, “Bangladesh’s energy transition journey so far | United Nations in Bangladesh.” Accessed: Feb. 03, 2025. [Online]. Available: https://bangladesh.un.org/en/260959-bangladesh’s-energy-transition-journey-so-far
- C. Ghenai, A. Inayat, A. Shanableh, E. Al-Sarairah, and I. Janajreh, “Combustion and emissions analysis of Spent Pot lining (SPL) as alternative fuel in cement industry,” Sci. Total Environ., vol. 684, pp. 519–526, 2019, doi: 10.1016/j.scitotenv.2019.05.157.
- F. Kotoka, S. K. Tulashie, and D. D. Setsoafia, “Production of bioethanol from liquid waste from cassava dough during gari processing,” Biofuels, vol. 10, no. 4, pp. 493–501, 2019, doi: 10.1080/17597269.2017.1329491.
- P. Gautam, Neha, S. N. Upadhyay, and S. K. Dubey, “Bio-methanol as a renewable fuel from waste biomass: Current trends and future perspective,” Fuel, vol. 273, no. 117783, p. 117783, 2020, doi: 10.1016/j.fuel.2020.117783.
- A. Procentese, F. Raganati, G. Olivieri, M. E. Russo, M. de la Feld, and A. Marzocchella, “Renewable feedstocks for biobutanol production by fermentation,” N. Biotechnol., vol. 39, pp. 135–140, 2017, doi: 10.1016/j.nbt.2016.10.010.
- J. M.-I. F. and Agribusiness and undefined 2014, “Manure as a resource: livestock waste management from anaerobic digestion, opportunities and challenges for Brazil,” ageconsearch.umn.eduJFCM MathiasInternational Food Agribus. Manag. Rev. 2014•ageconsearch.umn.edu, Accessed: Feb. 03, 2025. [Online]. Available: https://ageconsearch.umn.edu/record/188711/
- H. Zhang, H. Li, Y. Hu, K. T. Venkateswara Rao, C. (Charles) Xu, and S. Yang, “Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts,” Renew. Sustain. Energy Rev., vol. 114, p. 109296, Oct. 2019, doi: 10.1016/J.RSER.2019.109296.
- A. Avinash, P. Sasikumar, and A. Murugesan, “Understanding the interaction among the barriers of biodiesel production from waste cooking oil in India- an interpretive structural modeling approach,” Renew. Energy, vol. 127, pp. 678–684, Nov. 2018, doi: 10.1016/j.renene.2018.04.079.
- M. D. Putra, C. Irawan, Udiantoro, Y. Ristianingsih, and I. F. Nata, “A cleaner process for biodiesel production from waste cooking oil using waste materials as a heterogeneous catalyst and its kinetic study,” J. Clean. Prod., vol. 195, pp. 1249–1258, 2018, doi: 10.1016/j.jclepro.2018.06.010.
- R. Uddin, “Used cooking oil, a silent threat to consumer health - The Business Post.” Accessed: Feb. 04, 2025. [Online]. Available: https://businesspostbd.com/front/used-cooking-oil-a-silent-threat-to-consumer-health-2023-05-05
- M. Ehsan, M. C.-P. Engineering, and undefined 2015, “Production of biodiesel using alkaline based catalysts from waste cooking oil: a case study,” ElsevierM Ehsan, MTH ChowdhuryProcedia Eng. 2015•Elsevier, Accessed: Feb. 04, 2025. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1877705815008395
- M. U. H. Suzihaque, H. Alwi, U. Kalthum Ibrahim, S. Abdullah, and N. Haron, “Biodiesel production from waste cooking oil: A brief review,” Mater. Today Proc., vol. 63, pp. S490–S495, Jan. 2022, doi: 10.1016/J.MATPR.2022.04.527.
- S. Mahmud, A. S. M. R. Haider, S. T. Shahriar, S. Salehin, A. S. M. M. Hasan, and M. T. Johansson, “Bioethanol and biodiesel blended fuels — Feasibility analysis of biofuel feedstocks in Bangladesh,” Energy Reports, vol. 8, pp. 1741–1756, 2022, doi: 10.1016/j.egyr.2022.01.001.
- A. A. Adenuga, J. A. O. Oyekunle, and O. O. Idowu, “Pathway to reduce free fatty acid formation in Calophyllum inophyllum kernel oil: A renewable feedstock for biodiesel production,” J. Clean. Prod., vol. 316, p. 128222, Sep. 2021, doi: 10.1016/J.JCLEPRO.2021.128222.
- D. Saravanan, D. Balaji, P. Lawrence, G. Arunkumar, and V. Hariram, “Online) Biodiesel Production-A Critical Review on Bio-oil Extraction and its Transesterification,” Int. J. Veh. Struct. Syst., vol. 16, no. 3, pp. 306–313, 2024, doi: 10.4273/ijvss.16.3.01.
- A. Kumar and S. Sharma, “Potential non-edible oil resources as biodiesel feedstock: An Indian perspective,” Renew. Sustain. Energy Rev., vol. 15, no. 4, pp. 1791–1800, May 2011, doi: 10.1016/j.rser.2010.11.020.
- L. Yang, M. Takase, M. Zhang, T. Zhao, and X. Wu, “Potential non-edible oil feedstock for biodiesel production in Africa: A survey,” Renew. Sustain. Energy Rev., vol. 38, pp. 461–477, Oct. 2014, doi: 10.1016/J.RSER.2014.06.002.
- H. X. Chen, W. Xia, and S. Wang, “Biodiesel production from waste cooking oil using a waste diaper derived heterogeneous magnetic catalyst,” Brazilian J. Chem. Eng. 2022 402, vol. 40, no. 2, pp. 511–520, Jul. 2022, doi: 10.1007/S43153-022-00257-Z.
- J. Milano et al., “Physicochemical property enhancement of biodiesel synthesis from hybrid feedstocks of waste cooking vegetable oil and Beauty leaf oil through optimized alkaline-catalysed transesterification,” Waste Manag., vol. 80, pp. 435–449, Oct. 2018, doi: 10.1016/j.wasman.2018.09.005.
- M. V. L. Chhandama, J. V. L. Ruatpuia, S. Ao, A. C. Chetia, K. B. Satyan, and S. L. Rokhum, “Microalgae as a sustainable feedstock for biodiesel and other production industries: Prospects and challenges,” Energy Nexus, vol. 12, p. 100255, Dec. 2023, doi: 10.1016/j.nexus.2023.100255.
- B. Abdullah et al., “Fourth generation biofuel: A review on risks and mitigation strategies,” Renew. Sustain. Energy Rev., vol. 107, pp. 37–50, Jun. 2019, doi: 10.1016/J.RSER.2019.02.018.
- D. Singh, D. Sharma, S. L. Soni, S. Sharma, P. Kumar Sharma, and A. Jhalani, “A review on feedstocks, production processes, and yield for different generations of biodiesel,” Fuel, vol. 262, p. 116553, Feb. 2020, doi: 10.1016/J.FUEL.2019.116553.
- S. Suherman, I. Abdullah, M. Sabri, and A. S. Silitonga, “Evaluation of Physicochemical Properties Composite Biodiesel from Waste Cooking Oil and Schleichera oleosa Oil,” Energies, vol. 16, no. 15, p. 5771, Aug. 2023, doi: 10.3390/en16155771.
- S. Abbas Ali, S. Hunagund, S. Sameer Hussain, and A. Hussain Bagwan, “The effect of nanoparticles dispersed in waste cooking oil (WCO) biodiesel on thermal performance characteristics of VCR engine,” Mater. Today Proc., vol. 43, pp. 888–891, 2021, doi: 10.1016/j.matpr.2020.07.214.
- Anon, “Edible oil consumption rises 20pc in 5 years | The Daily Star,” 2021. Accessed: Feb. 04, 2025. [Online]. Available: https://www.thedailystar.net/business/economy/news/edible-oil-consumption-rises-20pc-5-years-2165661
- Anon, “Muenzer Bangla Private Limited: A green player in the greasy world of used cooking oil business | The Business Standard,” 2021. Accessed: Feb. 04, 2025. [Online]. Available: https://www.tbsnews.net/features/panorama/muenzer-bangla-private-limited-green-player-greasy-world-used-cooking-oil-business
- Monika, S. Banga, and V. V. Pathak, “Biodiesel production from waste cooking oil: A comprehensive review on the application of heterogenous catalysts,” Energy Nexus, vol. 10, p. 100209, Jun. 2023, doi: 10.1016/j.nexus.2023.100209.
- S. Ratshoshi, H. E. Mukaya, and D. Nkazi, “Hydrocracking of non‐edible vegetable oil and waste cooking oils for the production of light hydrocarbon fuels: A review,” Can. J. Chem. Eng., 2024.
- R. H. Venderbosch and W. Prins, “Fast pyrolysis technology development,” Biofuels, Bioprod. biorefining, vol. 4, no. 2, pp. 178–208, 2010.
- Y. Palani, C. Devarajan, D. Manickam, and S. Thanikodi, “Performance and emission characteristics of biodiesel-blend in diesel engine: A review,” Environ. Eng. Res., vol. 27, no. 1, 2022.
- P. Barad and P. Shah, “Calorific value and density for Palm based biodiesel and Petro-diesel Blends,” vol. 3, no. 2, 2017, Accessed: Feb. 05, 2025. [Online]. Available: www.ijariie.com3176
- A. Demirbas, “Comparison of transesterification methods for production of biodiesel from vegetable oils and fats,” Energy Convers. Manag., vol. 49, no. 1, pp. 125–130, Jan. 2008, doi: 10.1016/j.enconman.2007.05.002.
- S. Rezania et al., “Review on transesterification of non-edible sources for biodiesel production with a focus on economic aspects, fuel properties and by-product applications,” Energy Convers. Manag., vol. 201, p. 112155, Dec. 2019, doi: 10.1016/J.ENCONMAN.2019.112155.
- M. A. Ahmad Farid, M. A. Hassan, Y. H. Taufiq-Yap, Y. Shirai, M. Y. Hasan, and M. R. Zakaria, “Waterless purification using oil palm biomass-derived bioadsorbent improved the quality of biodiesel from waste cooking oil,” J. Clean. Prod., vol. 165, pp. 262–272, Nov. 2017, doi: 10.1016/j.jclepro.2017.07.136.
- N. Nirmala, S. S. Dawn, and C. Harindra, “Analysis of performance and emission characteristics of Waste cooking oil and Chlorella variabilis MK039712.1 biodiesel blends in a single cylinder, four strokes diesel engine,” Renew. Energy, vol. 147, pp. 284–292, Mar. 2020, doi: 10.1016/j.renene.2019.08.133.
- S. Dharma, H. C. Ong, H. H. Masjuki, A. H. Sebayang, and A. S. Silitonga, “An overview of engine durability and compatibility using biodiesel–bioethanol–diesel blends in compression-ignition engines,” Energy Convers. Manag., vol. 128, pp. 66–81, Nov. 2016, doi: 10.1016/j.enconman.2016.08.072.
- H. H. Masjuki, M. Mofijur, and M. A. Kalam, “Biofuel engine: a new challenge,” Kuala Lumpur Int. Corp. Relat. Off. Univ. Malaya, pp. 1–56, 2010.
- F. Binhweel, M. Bahadi, H. Pyar, A. Alsaedi, S. Hossain, and M. I. Ahmad, “A comparative review of some physicochemical properties of biodiesels synthesized from different generations of vegetative oils,” J. Phys. Conf. Ser., vol. 1900, no. 1, p. 012009, May 2021, doi: 10.1088/1742-6596/1900/1/012009.
- R. D. Misra and M. S. Murthy, “Blending of additives with biodiesels to improve the cold flow properties, combustion and emission performance in a compression ignition engine—A review,” Renew. Sustain. energy Rev., vol. 15, no. 5, pp. 2413–2422, 2011.
- C. Madihalli, H. Sudhakar, and M. Doble, “Mannosylerythritol lipid-A as a pour point depressant for enhancing the low-temperature fluidity of biodiesel and hydrocarbon fuels,” Energy & Fuels, vol. 30, no. 5, pp. 4118–4125, 2016.
- M. Mofijur, A. E. Atabani, H. H. al Masjuki, M. A. Kalam, and B. M. Masum, “A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: a comparative evaluation,” Renew. Sustain. energy Rev., vol. 23, pp. 391–404, 2013.
- N. D. D. Carareto, C. Y. C. S. Kimura, E. C. Oliveira, M. C. Costa, and A. J. A. Meirelles, “Flash points of mixtures containing ethyl esters or ethylic biodiesel and ethanol,” Fuel, vol. 96, pp. 319–326, Jun. 2012, doi: 10.1016/j.fuel.2012.01.025.
- M. U. Kaisan, F. O. Anafi, J. Nuszkowski, D. M. Kulla, and S. Umaru, “Calorific value, flash point and cetane number of biodiesel from cotton, jatropha and neem binary and multi-blends with diesel,” Biofuels, vol. 11, no. 3, pp. 321–327, Apr. 2020, doi: 10.1080/17597269.2017.1358944.
- C. B. Sia, J. Kansedo, Y. H. Tan, and K. T. Lee, “Evaluation on biodiesel cold flow properties, oxidative stability and enhancement strategies: A review,” Biocatal. Agric. Biotechnol., vol. 24, p. 101514, 2020.
- C. C. Enweremadu and M. M. Mbarawa, “Technical aspects of production and analysis of biodiesel from used cooking oil—A review,” Renew. Sustain. energy Rev., vol. 13, no. 9, pp. 2205–2224, 2009.
- K. D. Mekonnen, Y. A. Endris, and K. Y. Abdu, “Alternative Methods for Biodiesel Cetane Number Valuation: A Technical Note,” ACS omega, vol. 9, no. 6, pp. 6296–6304, 2024.
- B. H. H. Goh et al., “Progress in utilisation of waste cooking oil for sustainable biodiesel and biojet fuel production,” Energy Convers. Manag., vol. 223, p. 113296, 2020.
- I. Vieitez et al., “Acid value, polar compounds and polymers as determinants of the efficient conversion of waste frying oils to biodiesel,” J. Am. Oil Chem. Soc., vol. 91, pp. 655–664, 2014.
- A. Kovács, J. Tóth, G. Isaák, and I. Keresztényi, “Aspects of storage and corrosion characteristics of biodiesel,” Fuel Process. Technol., vol. 134, pp. 59–64, 2015.
- S. F. Wong, A. N. T. Tiong, and Y. H. Chin, “Pre-treatment of waste cooking oil by combined activated carbon adsorption and acid esterification for biodiesel synthesis via two-stage transesterification,” Biofuels, vol. 14, no. 9, pp. 967–977, Oct. 2023, doi: 10.1080/17597269.2023.2196804.
- M. K. Yesilyurt, “The effects of the fuel injection pressure on the performance and emission characteristics of a diesel engine fuelled with waste cooking oil biodiesel-diesel blends,” Renew. Energy, vol. 132, pp. 649–666, Mar. 2019, doi: 10.1016/j.renene.2018.08.024.
- A. B. Sahabdheen and A. Arivarasu, “Synthesis and characterization of reusable heteropoly acid nanoparticles for one step biodiesel production from high acid value waste cooking oil – Performance and emission studies,” Mater. Today Proc., vol. 22, pp. 383–392, 2020, doi: 10.1016/j.matpr.2019.07.249.
- A. H. Al-Muhtaseb et al., “Facile technique towards clean fuel production by upgrading waste cooking oil in the presence of a heterogeneous catalyst,” J. King Saud Univ. - Sci., vol. 32, no. 8, pp. 3410–3416, Dec. 2020, doi: 10.1016/j.jksus.2020.10.001.
- O. Sahu, “Characterisation and utilization of heterogeneous catalyst from waste rice-straw for biodiesel conversion,” Fuel, vol. 287, p. 119543, Mar. 2021, doi: 10.1016/j.fuel.2020.119543.
- M. M. Naeem, E. G. Al-Sakkari, D. C. Boffito, M. A. Gadalla, and F. H. Ashour, “One-pot conversion of highly acidic waste cooking oil into biodiesel over a novel bio-based bi-functional catalyst,” Fuel, vol. 283, p. 118914, Jan. 2021, doi: 10.1016/j.fuel.2020.118914.
- M. Helmi, K. Tahvildari, A. Hemmati, P. A. Azar, and A. Safekordi, “Converting waste cooking oil into biodiesel using phosphomolybdic acid/clinoptilolite as an innovative green catalyst via electrolysis procedure; optimization by response surface methodology (RSM),” Fuel Process. Technol., vol. 225, no. 107062, p. 107062, 2022, doi: 10.1016/j.fuproc.2021.107062.
- I. Zahid et al., “Production of Fuel Additive Solketal via Catalytic Conversion of Biodiesel-Derived Glycerol,” Ind. Eng. Chem. Res., vol. 59, no. 48, pp. 20961–20978, Dec. 2020, doi: 10.1021/acs.iecr.0c04123.
- F. Ouanji, M. Kacimi, M. Ziyad, F. Puleo, and L. F. Liotta, “Production of biodiesel at small-scale (10 L) for local power generation,” Int. J. Hydrog. Energy, vol. 42, no. 13, pp. 8914–8921, 2017, doi: 10.1016/j.ijhydene.2016.06.182.
- M. C. Hsiao, J. Y. Kuo, S. A. Hsieh, P. H. Hsieh, and S. S. Hou, “Optimized conversion of waste cooking oil to biodiesel using modified calcium oxide as catalyst via a microwave heating system,” Fuel, vol. 266, Apr. 2020, doi: 10.1016/j.fuel.2020.117114.
- I. Ilmi, S. Suherman, E. Frida, N. W. Binti Mohd Zulkifli, and J. Jufrizal, “Mapping the landscape of WCO biolubricant studies: A Comprehensive bibliometric review with vosviewer,” Mech. Eng. Soc. Ind., vol. 4, no. 3, pp. 535–555, 2024, doi: 10.31603/mesi.12549.
- K. A. V. Miyuranga, B. M. C. M. Balasuriya, U. S. P. R. Arachchige, R. A. Jayasinghe, and N. A. Weerasekara, “Comparison of performance of various homogeneous alkali catalysts in transesterification of waste cooking oil,” Asian J. Chem., vol. 34, no. 12, pp. 3157–3161, 2022, doi: 10.14233/ajchem.2022.23849.
- S. Zheng, M. Kates, M. A. Dubé, and D. D. McLean, “Acid-catalyzed production of biodiesel from waste frying oil,” Biomass Bioenergy, vol. 30, no. 3, pp. 267–272, 2006, doi: 10.1016/j.biombioe.2005.10.004.
- R. Z. K. Hussein, N. K. Attia, M. K. Fouad, and S. T. ElSheltawy, “Experimental investigation and process simulation of biolubricant production from waste cooking oil,” Biomass Bioenergy, vol. 144, no. 105850, p. 105850, 2021, doi: 10.1016/j.biombioe.2020.105850.
- A. Ashok, L. J. Kennedy, J. J. Vijaya, and U. Aruldoss, “Optimization of biodiesel production from waste cooking oil by magnesium oxide nanocatalyst synthesized using coprecipitation method,” Clean Technol. Environ. Policy, vol. 20, no. 6, pp. 1219–1231, 2018, doi: 10.1007/s10098-018-1547-x.
- A. Rafati, K. Tahvildari, and M. Nozari, “Production of biodiesel by electrolysis method from waste cooking oil using heterogeneous MgO-NaOH nano catalyst,” Energy Sources Recover. Util. Environ. Eff., vol. 41, no. 9, pp. 1062–1074, 2019, doi: 10.1080/15567036.2018.1539139.
- H. Lee et al., “Continuous waste cooking oil transesterification with microwave heating and strontium oxide catalyst,” Chem. Eng. Technol., vol. 41, no. 1, pp. 192–198, 2018, doi: 10.1002/ceat.201600561.
- G. Guan, K. Kusakabe, and S. Yamasaki, “Tri-potassium phosphate as a solid catalyst for biodiesel production from waste cooking oil,” Fuel Process. Technol., vol. 90, no. 4, pp. 520–524, 2009, doi: 10.1016/j.fuproc.2009.01.008.
- W. Widayat, D. Andhika Putra, and I. Nursafitri, “Preparation of α-Fe2O3-Al2O3 catalysts and catalytic testing for biodiesel production,” Mater. Today, vol. 13, pp. 97–102, 2019, doi: 10.1016/j.matpr.2019.03.195.
- K. Jacobson, R. Gopinath, L. Meher, and A. Dalai, “Solid acid catalyzed biodiesel production from waste cooking oil,” Appl. Catal. B, vol. 85, no. 1–2, pp. 86–91, 2008, doi: 10.1016/j.apcatb.2008.07.005.
- R. M. Mohamed, G. A. Kadry, H. A. Abdel-Samad, and M. E. Awad, “High operative heterogeneous catalyst in biodiesel production from waste cooking oil,” Egypt. J. Pet., vol. 29, no. 1, pp. 59–65, 2020, doi: 10.1016/j.ejpe.2019.11.002.
- N. H. Said, F. N. Ani, and M. F. M. Said, “REVIEW OF THE PRODUCTION OF BIODIESEL FROM WASTE COOKING OIL USING SOLID CATALYSTS,” J. Mech. Eng. Sci., vol. 8, pp. 1302–1311, Jun. 2015, doi: 10.15282/jmes.8.2015.5.0127.
- N. A. Roslan, S. Zainal Abidin, N. Abdullah, O. U. Osazuwa, R. Abdul Rasid, and N. M. Yunus, “Esterification reaction of free fatty acid in used cooking oil using sulfonated hypercrosslinked exchange resin as catalyst,” Chem. Eng. Res. Des., vol. 180, pp. 414–424, 2022, doi: 10.1016/j.cherd.2021.10.020.
- J. Gardy et al., “A magnetically separable SO4/Fe-Al-TiO2 solid acid catalyst for biodiesel production from waste cooking oil,” Appl. Catal. B, vol. 234, pp. 268–278, 2018, doi: 10.1016/j.apcatb.2018.04.046.
- E. Parandi et al., “Biodiesel production from waste cooking oil using a novel biocatalyst of lipase enzyme immobilized magnetic nanocomposite,” Fuel, vol. 313, no. 123057, p. 123057, 2022, doi: 10.1016/j.fuel.2021.123057.
- M. J. Costa et al., “Enzymatic biodiesel production by hydroesterification using waste cooking oil as feedstock,” Chem. Eng. Process., vol. 157, no. 108131, p. 108131, 2020, doi: 10.1016/j.cep.2020.108131.
- N.-W. Li, M.-H. Zong, and H. Wu, “Highly efficient transformation of waste oil to biodiesel by immobilized lipase from Penicillium expansum,” Process Biochem., vol. 44, no. 6, pp. 685–688, 2009, doi: 10.1016/j.procbio.2009.02.012.
- W. H. Wu, T. A. Foglia, W. N. Marmer, and J. G. Phillips, “Optimizing production of ethyl esters of grease using 95% ethanol by response surface methodology,” J. Am. Oil Chem. Soc., vol. 76, no. 4, pp. 517–521, 1999, doi: 10.1007/s11746-999-0034-2.
- N. A. Ibrahim et al., “Biodiesel production from waste cooking oil using magnetic bifunctional calcium and iron oxide nanocatalysts derived from empty fruit bunch,” Fuel, vol. 317, no. 123525, p. 123525, 2022, doi: 10.1016/j.fuel.2022.123525.
- I. Simbi, U. O. Aigbe, O. Oyekola, and O. A. Osibote, “Optimization of biodiesel produced from waste sunflower cooking oil over bi-functional catalyst,” Results Eng., vol. 13, no. 100374, p. 100374, 2022, doi: 10.1016/j.rineng.2022.100374.
- R. Muñoz et al., “Fly ash as a new versatile acid-base catalyst for biodiesel production,” Renew. Energy, vol. 162, pp. 1931–1939, 2020, doi: 10.1016/j.renene.2020.09.099.
- R. Bharti, B. Singh, and R. Oraon, “Synthesis of Sn-CaO as a bifunctional catalyst and its application for biodiesel production from waste cooking oil,” Biofuels, vol. 14, no. 6, pp. 607–617, 2023, doi: 10.1080/17597269.2022.2161128.
- J. Gardy, A. Hassanpour, X. Lai, M. H. Ahmed, and M. Rehan, “Biodiesel production from used cooking oil using a novel surface functionalised TiO2 nano-catalyst,” Appl. Catal. B Environ., vol. 207, pp. 297–310, 2017, doi: 10.1016/j.apcatb.2017.01.080.
- M. Mittelbach and P. Tritthart, “Diesel fuel derived from vegetable oils, III. Emission tests using methyl esters of used frying oil,” J. Am. Oil Chem. Soc., vol. 65, no. 7, pp. 1185–1187, 1988.
- B. Ghobadian, H. Rahimi, A. M. Nikbakht, G. Najafi, and T. F. Yusaf, “Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network,” Renew. energy, vol. 34, no. 4, pp. 976–982, 2009.
- R. Metawea, T. Zewail, E.-S. El-Ashtoukhy, I. El Gheriany, and H. Hamad, “Process intensification of the transesterification of palm oil to biodiesel in a batch agitated vessel provided with mesh screen extended baffles,” Energy (Oxf)., vol. 158, pp. 111–120, 2018, doi: 10.1016/j.energy.2018.06.007.
- A. Zare et al., “The effect of triacetin as a fuel additive to waste cooking biodiesel on engine performance and exhaust emissions,” Fuel, vol. 182, pp. 640–649, Oct. 2016, doi: 10.1016/j.fuel.2016.06.039.
- E. Jiaqiang et al., “Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review,” Renew. Sustain. Energy Rev., vol. 80, pp. 620–647, 2017.
- X. J. Man, C. S. Cheung, Z. Ning, L. Wei, and Z. H. Huang, “Influence of engine load and speed on regulated and unregulated emissions of a diesel engine fueled with diesel fuel blended with waste cooking oil biodiesel,” Fuel, vol. 180, pp. 41–49, Sep. 2016, doi: 10.1016/j.fuel.2016.04.007.
- G. L. N. Rao, S. Sampath, and K. Rajagopal, “Experimental studies on the combustion and emission characteristics of a diesel engine fuelled with used cooking oil methyl ester and its diesel blends,” Int. J. Eng. Appl. Sci., vol. 4, no. 1, pp. 64–70, 2008.
- M. P. Dorado, E. Ballesteros, J. M. Arnal, J. Gomez, and F. J. Lopez, “Exhaust emissions from a Diesel engine fueled with transesterified waste olive oil☆,” Fuel, vol. 82, no. 11, pp. 1311–1315, 2003.
- Y. Ulusoy, Y. Tekin, M. Cetinkaya, and F. Karaosmanoglu, “The engine tests of biodiesel from used frying oil,” Energy Sources, vol. 26, no. 10, pp. 927–932, 2004.
- M. A. Kalam, M. Husnawan, and H. H. Masjuki, “Exhaust emission and combustion evaluation of coconut oil-powered indirect injection diesel engine,” Renew. Energy, vol. 28, no. 15, pp. 2405–2415, 2003.
- Z. Utlu and M. S. Koçak, “The effect of biodiesel fuel obtained from waste frying oil on direct injection diesel engine performance and exhaust emissions,” Renew. energy, vol. 33, no. 8, pp. 1936–1941, 2008.
- C. C. Enweremadu and H. L. Rutto, “Combustion, emission and engine performance characteristics of used cooking oil biodiesel—A review,” Renew. Sustain. energy Rev., vol. 14, no. 9, pp. 2863–2873, 2010.
- A. Abuhabaya, J. D. Fieldhouse, and D. R. Brown, “Evaluation of properties and use of waste vegetable oil (WVO), pure vegetable oils and standard diesel as used in a compression ignition engine,” The University of Huddersfield, 2010.
- C. V Sudhir, N. Y. Sharma, and P. Mohanan, “Potential of waste cooking oils as biodiesel feedstock,” Emirates J. Eng. Res., vol. 12, no. 3, pp. 69–75, 2007.
- R. Murali Manohar, M. Prabhahar, and S. Sendilvelan, “Experimental investigation of combustion and emission characteristics of engine is fueled with diesel and UVOME blends of B20K and B80K,” Eur. J. Sci. Res., vol. 76, no. 3, pp. 327–334, 2012.
- S.-H. Liu, Y.-C. Lin, and K.-H. Hsu, “Emissions of regulated pollutants and PAHs from waste-cooking-oil biodiesel-fuelled heavy-duty diesel engine with catalyzer,” Aerosol Air Qual. Res., vol. 12, no. 2, pp. 218–227, 2012.
- A. Ranjan, S. S. Dawn, J. Jayaprabakar, N. Nirmala, K. Saikiran, and S. Sai Sriram, “Experimental investigation on effect of MgO nanoparticles on cold flow properties, performance, emission and combustion characteristics of waste cooking oil biodiesel,” Fuel, vol. 220, pp. 780–791, May 2018, doi: 10.1016/j.fuel.2018.02.057.
- M. I. Al-Widyan and G. Tashtoush, “Utilization of ethyl ester of waste vegetable oils as fuel in diesel engines,” Fuel Process. Technol., vol. 76, no. 2, pp. 91–103, 2002.
- M. J. Reddy, N. Sai Rakesh, J. Jayaraman, K. Vijai Anand, P. Appavu, and T. Arunkumar, “Effect of novel bio-waste derived nano particles as additives on the performance of diesel engine fuelled with waste cooking oil biodiesel blends,” Mater. Today Proc., vol. 44, pp. 3530–3535, 2021, doi: 10.1016/j.matpr.2020.09.292.
- H. F. Öztop, Y. Varol, Ş. Altun, and M. Firat, “Using gasoline-like fuel obtained from waste automobile tires in a spark-ignited engine,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 36, no. 13, pp. 1468–1475, 2014, doi: 10.1080/15567036.2011.576421.
- D. Singh et al., “A comprehensive review of biodiesel production from waste cooking oil and its use as fuel in compression ignition engines: 3rd generation cleaner feedstock,” J. Clean. Prod., vol. 307, p. 127299, Jul. 2021, doi: 10.1016/j.jclepro.2021.127299.
- Ö. Can, “Combustion characteristics, performance and exhaust emissions of a diesel engine fueled with a waste cooking oil biodiesel mixture,” Energy Convers. Manag., vol. 87, pp. 676–686, Nov. 2014, doi: 10.1016/j.enconman.2014.07.066.
- K. Hamasaki, E. Kinoshita, H. Tajima, K. Takasaki, and D. Morita, “(3-09) Combustion Characteristics of Diesel Engines with Waste Vegetable Oil Methyl Ester ((AF-3) Alternative Fuels 3-Biomass Fuels and Fuel Design),” in The Proceedings of the International symposium on diagnostics and modeling of combustion in internal combustion engines 01.204, The Japan Society of Mechanical Engineers, 2001, p. 55.
- A. M. A. Attia and A. E. Hassaneen, “Influence of diesel fuel blended with biodiesel produced from waste cooking oil on diesel engine performance,” Fuel, vol. 167, pp. 316–328, Mar. 2016, doi: 10.1016/j.fuel.2015.11.064.
- G. Dwivedi, S. Jain, and M. P. Sharma, “Impact analysis of biodiesel on engine performance - A review,” Renew. Sustain. Energy Rev., vol. 15, no. 9, pp. 4633–4641, Dec. 2011, doi: 10.1016/j.rser.2011.07.089.
- K. Muralidharan and D. Vasudevan, “Performance, emission and combustion characteristics of a variable compression ratio engine using methyl esters of waste cooking oil and diesel blends,” Appl. Energy, vol. 88, no. 11, pp. 3959–3968, 2011, doi: 10.1016/j.apenergy.2011.04.014.
- J. Kataria, S. K. Mohapatra, and K. Kundu, “Biodiesel production from waste cooking oil using heterogeneous catalysts and its operational characteristics on variable compression ratio CI engine,” J. Energy Inst., vol. 92, no. 2, pp. 275–287, Apr. 2019, doi: 10.1016/j.joei.2018.01.008.
- M. Bhuiya, M. Rasul, M. Khan, and N. Ashwath, “Performance and Emission Characteristics of Binary Mixture of Poppy and Waste Cooking Biodiesel,” in Energy Procedia, Elsevier Ltd, 2017, pp. 523–528. doi: 10.1016/j.egypro.2017.03.179.
- T. K. Sahu, S. Sarkar, and P. C. Shukla, “Combustion investigation of waste cooking oil (WCO) with varying compression ratio in a single cylinder CI engine,” Fuel, vol. 283, p. 119262, 2021.
References
L. Rocha-Meneses et al., “Recent advances on biodiesel production from waste cooking oil (WCO): A review of reactors, catalysts, and optimization techniques impacting the production,” Fuel (London, England), vol. 348, no. 128514, p. 128514, 2023, doi: 10.1016/j.fuel.2023.128514.
S. Adams, E. Boateng, and A. O. Acheampong, “Transport energy consumption and environmental quality: Does urbanization matter?,” Sci. Total Environ., vol. 744, p. 140617, Nov. 2020, doi: 10.1016/j.scitotenv.2020.140617.
A. M. Ashraful et al., “Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: A review,” Energy Convers. Manag., vol. 80, pp. 202–228, 2014, doi: 10.1016/j.enconman.2014.01.037.
“Annual energy report 2020-2021. ,” Bangladesh Power Development Board (BPDB). . Accessed: Feb. 03, 2025. [Online]. Available: https://bpdb.portal.gov.bd/sites/default/files/files/bpdb.portal.gov.bd/annual_reports/7b792f67_bf50_4b3d_9bef_8f9b568005c9/2022-10-18-05-55-f1971a327c2aebfd37f6f9a8e723d1fb.pdf
S. Mohazzem Hossain, S. Biswas, and M. Raihan Uddin, “Sustainable energy transition in Bangladesh: Challenges and pathways for the future,” Eng. Reports, vol. 6, no. 1, pp. 1–26, 2024, doi: 10.1002/eng2.12752.
P. et al. Friedlingstein, “Global Carbon Budget 2023,” Earth Syst. Sci. Data, vol. 15, no. 12, pp. 5301–5369, 2023, doi: 10.5194/ESSD-15-5301-2023.
A. Adnan, S. Mahmud, M. R. Uddin, A. Modi, M. M. Ehsan, and S. Salehin, “Energy, Exergy, Exergoeconomic, and environmental (4E) analyses of thermal power plants for municipal solid waste to energy application in Bangladesh,” Waste Manag., vol. 134, pp. 136–148, 2021, doi: 10.1016/j.wasman.2021.08.006.
L. Eckstein, David ; Künzel, Vera ; Schäfer, “Global Climate Index, 2021.” Accessed: Feb. 03, 2025. [Online]. Available: https://www.germanwatch.org/sites/default/files/Global Climate Risk Index 2021_2.pdf
G. of the P. R. of B. Ministry of Environment, Forest and Climate Change, “Climate Change Initiatives of Bangladesh Achieving Climate Resilience Ministry of Environment”.
S. Muralidharan and S. M. Khasru, “Bangladesh’s energy transition journey so far | United Nations in Bangladesh.” Accessed: Feb. 03, 2025. [Online]. Available: https://bangladesh.un.org/en/260959-bangladesh’s-energy-transition-journey-so-far
C. Ghenai, A. Inayat, A. Shanableh, E. Al-Sarairah, and I. Janajreh, “Combustion and emissions analysis of Spent Pot lining (SPL) as alternative fuel in cement industry,” Sci. Total Environ., vol. 684, pp. 519–526, 2019, doi: 10.1016/j.scitotenv.2019.05.157.
F. Kotoka, S. K. Tulashie, and D. D. Setsoafia, “Production of bioethanol from liquid waste from cassava dough during gari processing,” Biofuels, vol. 10, no. 4, pp. 493–501, 2019, doi: 10.1080/17597269.2017.1329491.
P. Gautam, Neha, S. N. Upadhyay, and S. K. Dubey, “Bio-methanol as a renewable fuel from waste biomass: Current trends and future perspective,” Fuel, vol. 273, no. 117783, p. 117783, 2020, doi: 10.1016/j.fuel.2020.117783.
A. Procentese, F. Raganati, G. Olivieri, M. E. Russo, M. de la Feld, and A. Marzocchella, “Renewable feedstocks for biobutanol production by fermentation,” N. Biotechnol., vol. 39, pp. 135–140, 2017, doi: 10.1016/j.nbt.2016.10.010.
J. M.-I. F. and Agribusiness and undefined 2014, “Manure as a resource: livestock waste management from anaerobic digestion, opportunities and challenges for Brazil,” ageconsearch.umn.eduJFCM MathiasInternational Food Agribus. Manag. Rev. 2014•ageconsearch.umn.edu, Accessed: Feb. 03, 2025. [Online]. Available: https://ageconsearch.umn.edu/record/188711/
H. Zhang, H. Li, Y. Hu, K. T. Venkateswara Rao, C. (Charles) Xu, and S. Yang, “Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts,” Renew. Sustain. Energy Rev., vol. 114, p. 109296, Oct. 2019, doi: 10.1016/J.RSER.2019.109296.
A. Avinash, P. Sasikumar, and A. Murugesan, “Understanding the interaction among the barriers of biodiesel production from waste cooking oil in India- an interpretive structural modeling approach,” Renew. Energy, vol. 127, pp. 678–684, Nov. 2018, doi: 10.1016/j.renene.2018.04.079.
M. D. Putra, C. Irawan, Udiantoro, Y. Ristianingsih, and I. F. Nata, “A cleaner process for biodiesel production from waste cooking oil using waste materials as a heterogeneous catalyst and its kinetic study,” J. Clean. Prod., vol. 195, pp. 1249–1258, 2018, doi: 10.1016/j.jclepro.2018.06.010.
R. Uddin, “Used cooking oil, a silent threat to consumer health - The Business Post.” Accessed: Feb. 04, 2025. [Online]. Available: https://businesspostbd.com/front/used-cooking-oil-a-silent-threat-to-consumer-health-2023-05-05
M. Ehsan, M. C.-P. Engineering, and undefined 2015, “Production of biodiesel using alkaline based catalysts from waste cooking oil: a case study,” ElsevierM Ehsan, MTH ChowdhuryProcedia Eng. 2015•Elsevier, Accessed: Feb. 04, 2025. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1877705815008395
M. U. H. Suzihaque, H. Alwi, U. Kalthum Ibrahim, S. Abdullah, and N. Haron, “Biodiesel production from waste cooking oil: A brief review,” Mater. Today Proc., vol. 63, pp. S490–S495, Jan. 2022, doi: 10.1016/J.MATPR.2022.04.527.
S. Mahmud, A. S. M. R. Haider, S. T. Shahriar, S. Salehin, A. S. M. M. Hasan, and M. T. Johansson, “Bioethanol and biodiesel blended fuels — Feasibility analysis of biofuel feedstocks in Bangladesh,” Energy Reports, vol. 8, pp. 1741–1756, 2022, doi: 10.1016/j.egyr.2022.01.001.
A. A. Adenuga, J. A. O. Oyekunle, and O. O. Idowu, “Pathway to reduce free fatty acid formation in Calophyllum inophyllum kernel oil: A renewable feedstock for biodiesel production,” J. Clean. Prod., vol. 316, p. 128222, Sep. 2021, doi: 10.1016/J.JCLEPRO.2021.128222.
D. Saravanan, D. Balaji, P. Lawrence, G. Arunkumar, and V. Hariram, “Online) Biodiesel Production-A Critical Review on Bio-oil Extraction and its Transesterification,” Int. J. Veh. Struct. Syst., vol. 16, no. 3, pp. 306–313, 2024, doi: 10.4273/ijvss.16.3.01.
A. Kumar and S. Sharma, “Potential non-edible oil resources as biodiesel feedstock: An Indian perspective,” Renew. Sustain. Energy Rev., vol. 15, no. 4, pp. 1791–1800, May 2011, doi: 10.1016/j.rser.2010.11.020.
L. Yang, M. Takase, M. Zhang, T. Zhao, and X. Wu, “Potential non-edible oil feedstock for biodiesel production in Africa: A survey,” Renew. Sustain. Energy Rev., vol. 38, pp. 461–477, Oct. 2014, doi: 10.1016/J.RSER.2014.06.002.
H. X. Chen, W. Xia, and S. Wang, “Biodiesel production from waste cooking oil using a waste diaper derived heterogeneous magnetic catalyst,” Brazilian J. Chem. Eng. 2022 402, vol. 40, no. 2, pp. 511–520, Jul. 2022, doi: 10.1007/S43153-022-00257-Z.
J. Milano et al., “Physicochemical property enhancement of biodiesel synthesis from hybrid feedstocks of waste cooking vegetable oil and Beauty leaf oil through optimized alkaline-catalysed transesterification,” Waste Manag., vol. 80, pp. 435–449, Oct. 2018, doi: 10.1016/j.wasman.2018.09.005.
M. V. L. Chhandama, J. V. L. Ruatpuia, S. Ao, A. C. Chetia, K. B. Satyan, and S. L. Rokhum, “Microalgae as a sustainable feedstock for biodiesel and other production industries: Prospects and challenges,” Energy Nexus, vol. 12, p. 100255, Dec. 2023, doi: 10.1016/j.nexus.2023.100255.
B. Abdullah et al., “Fourth generation biofuel: A review on risks and mitigation strategies,” Renew. Sustain. Energy Rev., vol. 107, pp. 37–50, Jun. 2019, doi: 10.1016/J.RSER.2019.02.018.
D. Singh, D. Sharma, S. L. Soni, S. Sharma, P. Kumar Sharma, and A. Jhalani, “A review on feedstocks, production processes, and yield for different generations of biodiesel,” Fuel, vol. 262, p. 116553, Feb. 2020, doi: 10.1016/J.FUEL.2019.116553.
S. Suherman, I. Abdullah, M. Sabri, and A. S. Silitonga, “Evaluation of Physicochemical Properties Composite Biodiesel from Waste Cooking Oil and Schleichera oleosa Oil,” Energies, vol. 16, no. 15, p. 5771, Aug. 2023, doi: 10.3390/en16155771.
S. Abbas Ali, S. Hunagund, S. Sameer Hussain, and A. Hussain Bagwan, “The effect of nanoparticles dispersed in waste cooking oil (WCO) biodiesel on thermal performance characteristics of VCR engine,” Mater. Today Proc., vol. 43, pp. 888–891, 2021, doi: 10.1016/j.matpr.2020.07.214.
Anon, “Edible oil consumption rises 20pc in 5 years | The Daily Star,” 2021. Accessed: Feb. 04, 2025. [Online]. Available: https://www.thedailystar.net/business/economy/news/edible-oil-consumption-rises-20pc-5-years-2165661
Anon, “Muenzer Bangla Private Limited: A green player in the greasy world of used cooking oil business | The Business Standard,” 2021. Accessed: Feb. 04, 2025. [Online]. Available: https://www.tbsnews.net/features/panorama/muenzer-bangla-private-limited-green-player-greasy-world-used-cooking-oil-business
Monika, S. Banga, and V. V. Pathak, “Biodiesel production from waste cooking oil: A comprehensive review on the application of heterogenous catalysts,” Energy Nexus, vol. 10, p. 100209, Jun. 2023, doi: 10.1016/j.nexus.2023.100209.
S. Ratshoshi, H. E. Mukaya, and D. Nkazi, “Hydrocracking of non‐edible vegetable oil and waste cooking oils for the production of light hydrocarbon fuels: A review,” Can. J. Chem. Eng., 2024.
R. H. Venderbosch and W. Prins, “Fast pyrolysis technology development,” Biofuels, Bioprod. biorefining, vol. 4, no. 2, pp. 178–208, 2010.
Y. Palani, C. Devarajan, D. Manickam, and S. Thanikodi, “Performance and emission characteristics of biodiesel-blend in diesel engine: A review,” Environ. Eng. Res., vol. 27, no. 1, 2022.
P. Barad and P. Shah, “Calorific value and density for Palm based biodiesel and Petro-diesel Blends,” vol. 3, no. 2, 2017, Accessed: Feb. 05, 2025. [Online]. Available: www.ijariie.com3176
A. Demirbas, “Comparison of transesterification methods for production of biodiesel from vegetable oils and fats,” Energy Convers. Manag., vol. 49, no. 1, pp. 125–130, Jan. 2008, doi: 10.1016/j.enconman.2007.05.002.
S. Rezania et al., “Review on transesterification of non-edible sources for biodiesel production with a focus on economic aspects, fuel properties and by-product applications,” Energy Convers. Manag., vol. 201, p. 112155, Dec. 2019, doi: 10.1016/J.ENCONMAN.2019.112155.
M. A. Ahmad Farid, M. A. Hassan, Y. H. Taufiq-Yap, Y. Shirai, M. Y. Hasan, and M. R. Zakaria, “Waterless purification using oil palm biomass-derived bioadsorbent improved the quality of biodiesel from waste cooking oil,” J. Clean. Prod., vol. 165, pp. 262–272, Nov. 2017, doi: 10.1016/j.jclepro.2017.07.136.
N. Nirmala, S. S. Dawn, and C. Harindra, “Analysis of performance and emission characteristics of Waste cooking oil and Chlorella variabilis MK039712.1 biodiesel blends in a single cylinder, four strokes diesel engine,” Renew. Energy, vol. 147, pp. 284–292, Mar. 2020, doi: 10.1016/j.renene.2019.08.133.
S. Dharma, H. C. Ong, H. H. Masjuki, A. H. Sebayang, and A. S. Silitonga, “An overview of engine durability and compatibility using biodiesel–bioethanol–diesel blends in compression-ignition engines,” Energy Convers. Manag., vol. 128, pp. 66–81, Nov. 2016, doi: 10.1016/j.enconman.2016.08.072.
H. H. Masjuki, M. Mofijur, and M. A. Kalam, “Biofuel engine: a new challenge,” Kuala Lumpur Int. Corp. Relat. Off. Univ. Malaya, pp. 1–56, 2010.
F. Binhweel, M. Bahadi, H. Pyar, A. Alsaedi, S. Hossain, and M. I. Ahmad, “A comparative review of some physicochemical properties of biodiesels synthesized from different generations of vegetative oils,” J. Phys. Conf. Ser., vol. 1900, no. 1, p. 012009, May 2021, doi: 10.1088/1742-6596/1900/1/012009.
R. D. Misra and M. S. Murthy, “Blending of additives with biodiesels to improve the cold flow properties, combustion and emission performance in a compression ignition engine—A review,” Renew. Sustain. energy Rev., vol. 15, no. 5, pp. 2413–2422, 2011.
C. Madihalli, H. Sudhakar, and M. Doble, “Mannosylerythritol lipid-A as a pour point depressant for enhancing the low-temperature fluidity of biodiesel and hydrocarbon fuels,” Energy & Fuels, vol. 30, no. 5, pp. 4118–4125, 2016.
M. Mofijur, A. E. Atabani, H. H. al Masjuki, M. A. Kalam, and B. M. Masum, “A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: a comparative evaluation,” Renew. Sustain. energy Rev., vol. 23, pp. 391–404, 2013.
N. D. D. Carareto, C. Y. C. S. Kimura, E. C. Oliveira, M. C. Costa, and A. J. A. Meirelles, “Flash points of mixtures containing ethyl esters or ethylic biodiesel and ethanol,” Fuel, vol. 96, pp. 319–326, Jun. 2012, doi: 10.1016/j.fuel.2012.01.025.
M. U. Kaisan, F. O. Anafi, J. Nuszkowski, D. M. Kulla, and S. Umaru, “Calorific value, flash point and cetane number of biodiesel from cotton, jatropha and neem binary and multi-blends with diesel,” Biofuels, vol. 11, no. 3, pp. 321–327, Apr. 2020, doi: 10.1080/17597269.2017.1358944.
C. B. Sia, J. Kansedo, Y. H. Tan, and K. T. Lee, “Evaluation on biodiesel cold flow properties, oxidative stability and enhancement strategies: A review,” Biocatal. Agric. Biotechnol., vol. 24, p. 101514, 2020.
C. C. Enweremadu and M. M. Mbarawa, “Technical aspects of production and analysis of biodiesel from used cooking oil—A review,” Renew. Sustain. energy Rev., vol. 13, no. 9, pp. 2205–2224, 2009.
K. D. Mekonnen, Y. A. Endris, and K. Y. Abdu, “Alternative Methods for Biodiesel Cetane Number Valuation: A Technical Note,” ACS omega, vol. 9, no. 6, pp. 6296–6304, 2024.
B. H. H. Goh et al., “Progress in utilisation of waste cooking oil for sustainable biodiesel and biojet fuel production,” Energy Convers. Manag., vol. 223, p. 113296, 2020.
I. Vieitez et al., “Acid value, polar compounds and polymers as determinants of the efficient conversion of waste frying oils to biodiesel,” J. Am. Oil Chem. Soc., vol. 91, pp. 655–664, 2014.
A. Kovács, J. Tóth, G. Isaák, and I. Keresztényi, “Aspects of storage and corrosion characteristics of biodiesel,” Fuel Process. Technol., vol. 134, pp. 59–64, 2015.
S. F. Wong, A. N. T. Tiong, and Y. H. Chin, “Pre-treatment of waste cooking oil by combined activated carbon adsorption and acid esterification for biodiesel synthesis via two-stage transesterification,” Biofuels, vol. 14, no. 9, pp. 967–977, Oct. 2023, doi: 10.1080/17597269.2023.2196804.
M. K. Yesilyurt, “The effects of the fuel injection pressure on the performance and emission characteristics of a diesel engine fuelled with waste cooking oil biodiesel-diesel blends,” Renew. Energy, vol. 132, pp. 649–666, Mar. 2019, doi: 10.1016/j.renene.2018.08.024.
A. B. Sahabdheen and A. Arivarasu, “Synthesis and characterization of reusable heteropoly acid nanoparticles for one step biodiesel production from high acid value waste cooking oil – Performance and emission studies,” Mater. Today Proc., vol. 22, pp. 383–392, 2020, doi: 10.1016/j.matpr.2019.07.249.
A. H. Al-Muhtaseb et al., “Facile technique towards clean fuel production by upgrading waste cooking oil in the presence of a heterogeneous catalyst,” J. King Saud Univ. - Sci., vol. 32, no. 8, pp. 3410–3416, Dec. 2020, doi: 10.1016/j.jksus.2020.10.001.
O. Sahu, “Characterisation and utilization of heterogeneous catalyst from waste rice-straw for biodiesel conversion,” Fuel, vol. 287, p. 119543, Mar. 2021, doi: 10.1016/j.fuel.2020.119543.
M. M. Naeem, E. G. Al-Sakkari, D. C. Boffito, M. A. Gadalla, and F. H. Ashour, “One-pot conversion of highly acidic waste cooking oil into biodiesel over a novel bio-based bi-functional catalyst,” Fuel, vol. 283, p. 118914, Jan. 2021, doi: 10.1016/j.fuel.2020.118914.
M. Helmi, K. Tahvildari, A. Hemmati, P. A. Azar, and A. Safekordi, “Converting waste cooking oil into biodiesel using phosphomolybdic acid/clinoptilolite as an innovative green catalyst via electrolysis procedure; optimization by response surface methodology (RSM),” Fuel Process. Technol., vol. 225, no. 107062, p. 107062, 2022, doi: 10.1016/j.fuproc.2021.107062.
I. Zahid et al., “Production of Fuel Additive Solketal via Catalytic Conversion of Biodiesel-Derived Glycerol,” Ind. Eng. Chem. Res., vol. 59, no. 48, pp. 20961–20978, Dec. 2020, doi: 10.1021/acs.iecr.0c04123.
F. Ouanji, M. Kacimi, M. Ziyad, F. Puleo, and L. F. Liotta, “Production of biodiesel at small-scale (10 L) for local power generation,” Int. J. Hydrog. Energy, vol. 42, no. 13, pp. 8914–8921, 2017, doi: 10.1016/j.ijhydene.2016.06.182.
M. C. Hsiao, J. Y. Kuo, S. A. Hsieh, P. H. Hsieh, and S. S. Hou, “Optimized conversion of waste cooking oil to biodiesel using modified calcium oxide as catalyst via a microwave heating system,” Fuel, vol. 266, Apr. 2020, doi: 10.1016/j.fuel.2020.117114.
I. Ilmi, S. Suherman, E. Frida, N. W. Binti Mohd Zulkifli, and J. Jufrizal, “Mapping the landscape of WCO biolubricant studies: A Comprehensive bibliometric review with vosviewer,” Mech. Eng. Soc. Ind., vol. 4, no. 3, pp. 535–555, 2024, doi: 10.31603/mesi.12549.
K. A. V. Miyuranga, B. M. C. M. Balasuriya, U. S. P. R. Arachchige, R. A. Jayasinghe, and N. A. Weerasekara, “Comparison of performance of various homogeneous alkali catalysts in transesterification of waste cooking oil,” Asian J. Chem., vol. 34, no. 12, pp. 3157–3161, 2022, doi: 10.14233/ajchem.2022.23849.
S. Zheng, M. Kates, M. A. Dubé, and D. D. McLean, “Acid-catalyzed production of biodiesel from waste frying oil,” Biomass Bioenergy, vol. 30, no. 3, pp. 267–272, 2006, doi: 10.1016/j.biombioe.2005.10.004.
R. Z. K. Hussein, N. K. Attia, M. K. Fouad, and S. T. ElSheltawy, “Experimental investigation and process simulation of biolubricant production from waste cooking oil,” Biomass Bioenergy, vol. 144, no. 105850, p. 105850, 2021, doi: 10.1016/j.biombioe.2020.105850.
A. Ashok, L. J. Kennedy, J. J. Vijaya, and U. Aruldoss, “Optimization of biodiesel production from waste cooking oil by magnesium oxide nanocatalyst synthesized using coprecipitation method,” Clean Technol. Environ. Policy, vol. 20, no. 6, pp. 1219–1231, 2018, doi: 10.1007/s10098-018-1547-x.
A. Rafati, K. Tahvildari, and M. Nozari, “Production of biodiesel by electrolysis method from waste cooking oil using heterogeneous MgO-NaOH nano catalyst,” Energy Sources Recover. Util. Environ. Eff., vol. 41, no. 9, pp. 1062–1074, 2019, doi: 10.1080/15567036.2018.1539139.
H. Lee et al., “Continuous waste cooking oil transesterification with microwave heating and strontium oxide catalyst,” Chem. Eng. Technol., vol. 41, no. 1, pp. 192–198, 2018, doi: 10.1002/ceat.201600561.
G. Guan, K. Kusakabe, and S. Yamasaki, “Tri-potassium phosphate as a solid catalyst for biodiesel production from waste cooking oil,” Fuel Process. Technol., vol. 90, no. 4, pp. 520–524, 2009, doi: 10.1016/j.fuproc.2009.01.008.
W. Widayat, D. Andhika Putra, and I. Nursafitri, “Preparation of α-Fe2O3-Al2O3 catalysts and catalytic testing for biodiesel production,” Mater. Today, vol. 13, pp. 97–102, 2019, doi: 10.1016/j.matpr.2019.03.195.
K. Jacobson, R. Gopinath, L. Meher, and A. Dalai, “Solid acid catalyzed biodiesel production from waste cooking oil,” Appl. Catal. B, vol. 85, no. 1–2, pp. 86–91, 2008, doi: 10.1016/j.apcatb.2008.07.005.
R. M. Mohamed, G. A. Kadry, H. A. Abdel-Samad, and M. E. Awad, “High operative heterogeneous catalyst in biodiesel production from waste cooking oil,” Egypt. J. Pet., vol. 29, no. 1, pp. 59–65, 2020, doi: 10.1016/j.ejpe.2019.11.002.
N. H. Said, F. N. Ani, and M. F. M. Said, “REVIEW OF THE PRODUCTION OF BIODIESEL FROM WASTE COOKING OIL USING SOLID CATALYSTS,” J. Mech. Eng. Sci., vol. 8, pp. 1302–1311, Jun. 2015, doi: 10.15282/jmes.8.2015.5.0127.
N. A. Roslan, S. Zainal Abidin, N. Abdullah, O. U. Osazuwa, R. Abdul Rasid, and N. M. Yunus, “Esterification reaction of free fatty acid in used cooking oil using sulfonated hypercrosslinked exchange resin as catalyst,” Chem. Eng. Res. Des., vol. 180, pp. 414–424, 2022, doi: 10.1016/j.cherd.2021.10.020.
J. Gardy et al., “A magnetically separable SO4/Fe-Al-TiO2 solid acid catalyst for biodiesel production from waste cooking oil,” Appl. Catal. B, vol. 234, pp. 268–278, 2018, doi: 10.1016/j.apcatb.2018.04.046.
E. Parandi et al., “Biodiesel production from waste cooking oil using a novel biocatalyst of lipase enzyme immobilized magnetic nanocomposite,” Fuel, vol. 313, no. 123057, p. 123057, 2022, doi: 10.1016/j.fuel.2021.123057.
M. J. Costa et al., “Enzymatic biodiesel production by hydroesterification using waste cooking oil as feedstock,” Chem. Eng. Process., vol. 157, no. 108131, p. 108131, 2020, doi: 10.1016/j.cep.2020.108131.
N.-W. Li, M.-H. Zong, and H. Wu, “Highly efficient transformation of waste oil to biodiesel by immobilized lipase from Penicillium expansum,” Process Biochem., vol. 44, no. 6, pp. 685–688, 2009, doi: 10.1016/j.procbio.2009.02.012.
W. H. Wu, T. A. Foglia, W. N. Marmer, and J. G. Phillips, “Optimizing production of ethyl esters of grease using 95% ethanol by response surface methodology,” J. Am. Oil Chem. Soc., vol. 76, no. 4, pp. 517–521, 1999, doi: 10.1007/s11746-999-0034-2.
N. A. Ibrahim et al., “Biodiesel production from waste cooking oil using magnetic bifunctional calcium and iron oxide nanocatalysts derived from empty fruit bunch,” Fuel, vol. 317, no. 123525, p. 123525, 2022, doi: 10.1016/j.fuel.2022.123525.
I. Simbi, U. O. Aigbe, O. Oyekola, and O. A. Osibote, “Optimization of biodiesel produced from waste sunflower cooking oil over bi-functional catalyst,” Results Eng., vol. 13, no. 100374, p. 100374, 2022, doi: 10.1016/j.rineng.2022.100374.
R. Muñoz et al., “Fly ash as a new versatile acid-base catalyst for biodiesel production,” Renew. Energy, vol. 162, pp. 1931–1939, 2020, doi: 10.1016/j.renene.2020.09.099.
R. Bharti, B. Singh, and R. Oraon, “Synthesis of Sn-CaO as a bifunctional catalyst and its application for biodiesel production from waste cooking oil,” Biofuels, vol. 14, no. 6, pp. 607–617, 2023, doi: 10.1080/17597269.2022.2161128.
J. Gardy, A. Hassanpour, X. Lai, M. H. Ahmed, and M. Rehan, “Biodiesel production from used cooking oil using a novel surface functionalised TiO2 nano-catalyst,” Appl. Catal. B Environ., vol. 207, pp. 297–310, 2017, doi: 10.1016/j.apcatb.2017.01.080.
M. Mittelbach and P. Tritthart, “Diesel fuel derived from vegetable oils, III. Emission tests using methyl esters of used frying oil,” J. Am. Oil Chem. Soc., vol. 65, no. 7, pp. 1185–1187, 1988.
B. Ghobadian, H. Rahimi, A. M. Nikbakht, G. Najafi, and T. F. Yusaf, “Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network,” Renew. energy, vol. 34, no. 4, pp. 976–982, 2009.
R. Metawea, T. Zewail, E.-S. El-Ashtoukhy, I. El Gheriany, and H. Hamad, “Process intensification of the transesterification of palm oil to biodiesel in a batch agitated vessel provided with mesh screen extended baffles,” Energy (Oxf)., vol. 158, pp. 111–120, 2018, doi: 10.1016/j.energy.2018.06.007.
A. Zare et al., “The effect of triacetin as a fuel additive to waste cooking biodiesel on engine performance and exhaust emissions,” Fuel, vol. 182, pp. 640–649, Oct. 2016, doi: 10.1016/j.fuel.2016.06.039.
E. Jiaqiang et al., “Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review,” Renew. Sustain. Energy Rev., vol. 80, pp. 620–647, 2017.
X. J. Man, C. S. Cheung, Z. Ning, L. Wei, and Z. H. Huang, “Influence of engine load and speed on regulated and unregulated emissions of a diesel engine fueled with diesel fuel blended with waste cooking oil biodiesel,” Fuel, vol. 180, pp. 41–49, Sep. 2016, doi: 10.1016/j.fuel.2016.04.007.
G. L. N. Rao, S. Sampath, and K. Rajagopal, “Experimental studies on the combustion and emission characteristics of a diesel engine fuelled with used cooking oil methyl ester and its diesel blends,” Int. J. Eng. Appl. Sci., vol. 4, no. 1, pp. 64–70, 2008.
M. P. Dorado, E. Ballesteros, J. M. Arnal, J. Gomez, and F. J. Lopez, “Exhaust emissions from a Diesel engine fueled with transesterified waste olive oil☆,” Fuel, vol. 82, no. 11, pp. 1311–1315, 2003.
Y. Ulusoy, Y. Tekin, M. Cetinkaya, and F. Karaosmanoglu, “The engine tests of biodiesel from used frying oil,” Energy Sources, vol. 26, no. 10, pp. 927–932, 2004.
M. A. Kalam, M. Husnawan, and H. H. Masjuki, “Exhaust emission and combustion evaluation of coconut oil-powered indirect injection diesel engine,” Renew. Energy, vol. 28, no. 15, pp. 2405–2415, 2003.
Z. Utlu and M. S. Koçak, “The effect of biodiesel fuel obtained from waste frying oil on direct injection diesel engine performance and exhaust emissions,” Renew. energy, vol. 33, no. 8, pp. 1936–1941, 2008.
C. C. Enweremadu and H. L. Rutto, “Combustion, emission and engine performance characteristics of used cooking oil biodiesel—A review,” Renew. Sustain. energy Rev., vol. 14, no. 9, pp. 2863–2873, 2010.
A. Abuhabaya, J. D. Fieldhouse, and D. R. Brown, “Evaluation of properties and use of waste vegetable oil (WVO), pure vegetable oils and standard diesel as used in a compression ignition engine,” The University of Huddersfield, 2010.
C. V Sudhir, N. Y. Sharma, and P. Mohanan, “Potential of waste cooking oils as biodiesel feedstock,” Emirates J. Eng. Res., vol. 12, no. 3, pp. 69–75, 2007.
R. Murali Manohar, M. Prabhahar, and S. Sendilvelan, “Experimental investigation of combustion and emission characteristics of engine is fueled with diesel and UVOME blends of B20K and B80K,” Eur. J. Sci. Res., vol. 76, no. 3, pp. 327–334, 2012.
S.-H. Liu, Y.-C. Lin, and K.-H. Hsu, “Emissions of regulated pollutants and PAHs from waste-cooking-oil biodiesel-fuelled heavy-duty diesel engine with catalyzer,” Aerosol Air Qual. Res., vol. 12, no. 2, pp. 218–227, 2012.
A. Ranjan, S. S. Dawn, J. Jayaprabakar, N. Nirmala, K. Saikiran, and S. Sai Sriram, “Experimental investigation on effect of MgO nanoparticles on cold flow properties, performance, emission and combustion characteristics of waste cooking oil biodiesel,” Fuel, vol. 220, pp. 780–791, May 2018, doi: 10.1016/j.fuel.2018.02.057.
M. I. Al-Widyan and G. Tashtoush, “Utilization of ethyl ester of waste vegetable oils as fuel in diesel engines,” Fuel Process. Technol., vol. 76, no. 2, pp. 91–103, 2002.
M. J. Reddy, N. Sai Rakesh, J. Jayaraman, K. Vijai Anand, P. Appavu, and T. Arunkumar, “Effect of novel bio-waste derived nano particles as additives on the performance of diesel engine fuelled with waste cooking oil biodiesel blends,” Mater. Today Proc., vol. 44, pp. 3530–3535, 2021, doi: 10.1016/j.matpr.2020.09.292.
H. F. Öztop, Y. Varol, Ş. Altun, and M. Firat, “Using gasoline-like fuel obtained from waste automobile tires in a spark-ignited engine,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 36, no. 13, pp. 1468–1475, 2014, doi: 10.1080/15567036.2011.576421.
D. Singh et al., “A comprehensive review of biodiesel production from waste cooking oil and its use as fuel in compression ignition engines: 3rd generation cleaner feedstock,” J. Clean. Prod., vol. 307, p. 127299, Jul. 2021, doi: 10.1016/j.jclepro.2021.127299.
Ö. Can, “Combustion characteristics, performance and exhaust emissions of a diesel engine fueled with a waste cooking oil biodiesel mixture,” Energy Convers. Manag., vol. 87, pp. 676–686, Nov. 2014, doi: 10.1016/j.enconman.2014.07.066.
K. Hamasaki, E. Kinoshita, H. Tajima, K. Takasaki, and D. Morita, “(3-09) Combustion Characteristics of Diesel Engines with Waste Vegetable Oil Methyl Ester ((AF-3) Alternative Fuels 3-Biomass Fuels and Fuel Design),” in The Proceedings of the International symposium on diagnostics and modeling of combustion in internal combustion engines 01.204, The Japan Society of Mechanical Engineers, 2001, p. 55.
A. M. A. Attia and A. E. Hassaneen, “Influence of diesel fuel blended with biodiesel produced from waste cooking oil on diesel engine performance,” Fuel, vol. 167, pp. 316–328, Mar. 2016, doi: 10.1016/j.fuel.2015.11.064.
G. Dwivedi, S. Jain, and M. P. Sharma, “Impact analysis of biodiesel on engine performance - A review,” Renew. Sustain. Energy Rev., vol. 15, no. 9, pp. 4633–4641, Dec. 2011, doi: 10.1016/j.rser.2011.07.089.
K. Muralidharan and D. Vasudevan, “Performance, emission and combustion characteristics of a variable compression ratio engine using methyl esters of waste cooking oil and diesel blends,” Appl. Energy, vol. 88, no. 11, pp. 3959–3968, 2011, doi: 10.1016/j.apenergy.2011.04.014.
J. Kataria, S. K. Mohapatra, and K. Kundu, “Biodiesel production from waste cooking oil using heterogeneous catalysts and its operational characteristics on variable compression ratio CI engine,” J. Energy Inst., vol. 92, no. 2, pp. 275–287, Apr. 2019, doi: 10.1016/j.joei.2018.01.008.
M. Bhuiya, M. Rasul, M. Khan, and N. Ashwath, “Performance and Emission Characteristics of Binary Mixture of Poppy and Waste Cooking Biodiesel,” in Energy Procedia, Elsevier Ltd, 2017, pp. 523–528. doi: 10.1016/j.egypro.2017.03.179.
T. K. Sahu, S. Sarkar, and P. C. Shukla, “Combustion investigation of waste cooking oil (WCO) with varying compression ratio in a single cylinder CI engine,” Fuel, vol. 283, p. 119262, 2021.