Waste heat recovery technologies in modern internal combustion engines
Corresponding Author(s) : Amin Mahmoudzadeh Andwari
Future Energy,
Vol. 3 No. 3 (2024): August 2024 Issue
Abstract
Waste heat recovery (WHR) technologies in internal combustion engines (ICEs) outline various methods to harness wasted energy for improved efficiency and reduced emissions. The discussion covers heat exchangers, turbo-compounding, bottoming cycles, thermoelectric generators (TEGs), thermochemical recuperation (TCR), thermoacoustic conversion, and absorption refrigeration. Each technology's principles, applications, benefits, and challenges are explored, highlighting advancements and innovations from industry leaders. The abstract underscores the ongoing efforts to maximize energy efficiency and minimize environmental impact in ICEs across diverse vehicle types and applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Masud, M. UHJoardder, and N. Ul Hasan, “Waste heat recovery systems for internal combustion engines: A review,” 2017. [Online]. Available: https://www.researchgate.net/publication/313882267
- N. V. Burnete, F. Mariasiu, C. Depcik, I. Barabas, and D. Moldovanu, “Review of thermoelectric generation for internal combustion engine waste heat recovery,” Progress in Energy and Combustion Science, vol. 91. Elsevier Ltd, Jul. 01, 2022. doi: 10.1016/j.pecs.2022.101009.
- M. Sheintuch, O. Nekhamkina, and L. Tartakovsky, “Heat Recuperation from Internal Combustion Engines by Fuel Reforming: Kinetics-Based Analysis,” ACS Engineering Au, vol. 3, no. 3, pp. 210–223, Jun. 2023, doi: 10.1021/acsengineeringau.3c00007.
- S. Zare, F. Pourfayaz, A. R. Tavakolpour-Saleh, A. Mohammadian, and R. Mirshekari, “Investigation of a two-diaphragm thermoacoustic Stirling engine using passivity method,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 45, no. 10, Oct. 2023, doi: 10.1007/s40430-023-04450-0.
- Z. Liu, K. Wang, and N. Xie, “Absorption Chiller/Kalina Cycle Coupled System for Low-Grade Waste Heat Recovery in Hydrate-Based CO2 Capture Process: An Economic and Exergetic Study,” International Journal of Computational Intelligence Systems, vol. 15, no. 1, Dec. 2022, doi: 10.1007/s44196-022-00119-z.
- Y. Wang, A. Biswas, R. Rodriguez, Z. Keshavarz-Motamed, and A. Emadi, “Hybrid electric vehicle specific engines: State-of-the-art review,” Energy Reports, vol. 8. Elsevier Ltd, pp. 832–851, Nov. 01, 2022. doi: 10.1016/j.egyr.2021.11.265.
- J. Moradi, A. Gharehghani, and M. Aghahasani, “Application of machine learning to optimize the combustion characteristics of RCCI engine over wide load range,” Fuel, vol. 324, Sep. 2022, doi: 10.1016/j.fuel.2022.124494.
- O. Farhat, J. Faraj, F. Hachem, C. Castelain, and M. Khaled, “A recent review on waste heat recovery methodologies and applications: Comprehensive review, critical analysis and potential recommendations,” Cleaner Engineering and Technology, vol. 6. Elsevier Ltd, Feb. 01, 2022. doi: 10.1016/j.clet.2021.100387.
- H. Aghaali and H. E. Ångström, “A review of turbocompounding as a waste heat recovery system for internal combustion engines,” Renewable and Sustainable Energy Reviews, vol. 49. Elsevier Ltd, pp. 813–824, May 22, 2015. doi: 10.1016/j.rser.2015.04.144.
- C. E. Sprouse, “Review of Organic Rankine Cycles for Internal Combustion Engine Waste Heat Recovery: Latest Decade in Review,” Sustainability (Switzerland) , vol. 16, no. 5. Multidisciplinary Digital Publishing Institute (MDPI), Mar. 01, 2024. doi: 10.3390/su16051924.
- G. E. Pateropoulos, T. G. Efstathiadis, and A. I. Kalfas, “Organic rankine cycle for turboprop engine application,” Aeronautical Journal, vol. 125, no. 1291, pp. 1666–1686, Sep. 2021, doi: 10.1017/aer.2021.32.
- M. d’Angelo, C. Galassi, and N. Lecis, “Thermoelectric Materials and Applications: A Review,” Energies, vol. 16, no. 17. Multidisciplinary Digital Publishing Institute (MDPI), Sep. 01, 2023. doi: 10.3390/en16176409.
- S. P. Kane and W. F. Northrop, “Thermochemical recuperation to enable efficient ammonia-diesel dual-fuel combustion in a compression ignition engine,” Energies (Basel), vol. 14, no. 22, Nov. 2021, doi: 10.3390/en14227540.
- C. Iniesta, J. L. Olazagoitia, J. Gros, J. Vinolas, and J. Aranceta, “Introduction to thermoacoustic Stirling engines: First steps and praxis,” in E3S Web of Conferences, EDP Sciences, Oct. 2021. doi: 10.1051/e3sconf/202131308005.
- R. Farzadi and M. Bazargan, “Experimental study of a diffusion absorption refrigeration cycle supplied by the exhaust waste heat of a sedan car at low engine speeds,” Heat and Mass Transfer/Waerme- und Stoffuebertragung, vol. 56, no. 4, pp. 1353–1363, Apr. 2020, doi: 10.1007/s00231-019-02793-w.
References
M. Masud, M. UHJoardder, and N. Ul Hasan, “Waste heat recovery systems for internal combustion engines: A review,” 2017. [Online]. Available: https://www.researchgate.net/publication/313882267
N. V. Burnete, F. Mariasiu, C. Depcik, I. Barabas, and D. Moldovanu, “Review of thermoelectric generation for internal combustion engine waste heat recovery,” Progress in Energy and Combustion Science, vol. 91. Elsevier Ltd, Jul. 01, 2022. doi: 10.1016/j.pecs.2022.101009.
M. Sheintuch, O. Nekhamkina, and L. Tartakovsky, “Heat Recuperation from Internal Combustion Engines by Fuel Reforming: Kinetics-Based Analysis,” ACS Engineering Au, vol. 3, no. 3, pp. 210–223, Jun. 2023, doi: 10.1021/acsengineeringau.3c00007.
S. Zare, F. Pourfayaz, A. R. Tavakolpour-Saleh, A. Mohammadian, and R. Mirshekari, “Investigation of a two-diaphragm thermoacoustic Stirling engine using passivity method,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 45, no. 10, Oct. 2023, doi: 10.1007/s40430-023-04450-0.
Z. Liu, K. Wang, and N. Xie, “Absorption Chiller/Kalina Cycle Coupled System for Low-Grade Waste Heat Recovery in Hydrate-Based CO2 Capture Process: An Economic and Exergetic Study,” International Journal of Computational Intelligence Systems, vol. 15, no. 1, Dec. 2022, doi: 10.1007/s44196-022-00119-z.
Y. Wang, A. Biswas, R. Rodriguez, Z. Keshavarz-Motamed, and A. Emadi, “Hybrid electric vehicle specific engines: State-of-the-art review,” Energy Reports, vol. 8. Elsevier Ltd, pp. 832–851, Nov. 01, 2022. doi: 10.1016/j.egyr.2021.11.265.
J. Moradi, A. Gharehghani, and M. Aghahasani, “Application of machine learning to optimize the combustion characteristics of RCCI engine over wide load range,” Fuel, vol. 324, Sep. 2022, doi: 10.1016/j.fuel.2022.124494.
O. Farhat, J. Faraj, F. Hachem, C. Castelain, and M. Khaled, “A recent review on waste heat recovery methodologies and applications: Comprehensive review, critical analysis and potential recommendations,” Cleaner Engineering and Technology, vol. 6. Elsevier Ltd, Feb. 01, 2022. doi: 10.1016/j.clet.2021.100387.
H. Aghaali and H. E. Ångström, “A review of turbocompounding as a waste heat recovery system for internal combustion engines,” Renewable and Sustainable Energy Reviews, vol. 49. Elsevier Ltd, pp. 813–824, May 22, 2015. doi: 10.1016/j.rser.2015.04.144.
C. E. Sprouse, “Review of Organic Rankine Cycles for Internal Combustion Engine Waste Heat Recovery: Latest Decade in Review,” Sustainability (Switzerland) , vol. 16, no. 5. Multidisciplinary Digital Publishing Institute (MDPI), Mar. 01, 2024. doi: 10.3390/su16051924.
G. E. Pateropoulos, T. G. Efstathiadis, and A. I. Kalfas, “Organic rankine cycle for turboprop engine application,” Aeronautical Journal, vol. 125, no. 1291, pp. 1666–1686, Sep. 2021, doi: 10.1017/aer.2021.32.
M. d’Angelo, C. Galassi, and N. Lecis, “Thermoelectric Materials and Applications: A Review,” Energies, vol. 16, no. 17. Multidisciplinary Digital Publishing Institute (MDPI), Sep. 01, 2023. doi: 10.3390/en16176409.
S. P. Kane and W. F. Northrop, “Thermochemical recuperation to enable efficient ammonia-diesel dual-fuel combustion in a compression ignition engine,” Energies (Basel), vol. 14, no. 22, Nov. 2021, doi: 10.3390/en14227540.
C. Iniesta, J. L. Olazagoitia, J. Gros, J. Vinolas, and J. Aranceta, “Introduction to thermoacoustic Stirling engines: First steps and praxis,” in E3S Web of Conferences, EDP Sciences, Oct. 2021. doi: 10.1051/e3sconf/202131308005.
R. Farzadi and M. Bazargan, “Experimental study of a diffusion absorption refrigeration cycle supplied by the exhaust waste heat of a sedan car at low engine speeds,” Heat and Mass Transfer/Waerme- und Stoffuebertragung, vol. 56, no. 4, pp. 1353–1363, Apr. 2020, doi: 10.1007/s00231-019-02793-w.