Experimental investigation of cycling characteristics of anatase TiO2 nanotubes as negative electrode of lithium-ion batteries
Corresponding Author(s) : Md. Arafat Rahman
Future Energy,
2025: In Press
Abstract
Anatase TiO2 Nanotubes (NT-TiO2) is synthesized via electrochemical anodization of 99.9% pure titanium foils in a fluorine containing Ethylene Glycol (EG) electrolyte and used as the anode of lithium-ion batteries (LIBs). In the first cycle, the charge-discharge capacities are 550 mAhg-1 and 400 mAhg-1, respectively, with columbic efficiency of 75.75%. At 40th cycle, charge-discharge capacities are found to be 375 mAhg-1 and 325 mAhg-1, respectively, with improved columbic efficiency of 86%. The superior electrochemical performances of this type of battery originated from its high specific surface area and highly nanotubes structure. These advanced features of the nanotubes provide higher contact between electrodes and electrolytes, shorten the diffusion pathways for conductive ions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Chy, M.N.U., et al., MXene as Promising Anode Material for High-Performance Lithium-Ion Batteries: A Comprehensive Review. 2024. 14(7): p. 616.
- Rahman, M.A., et al., Improvement on electrochemical performances of nanoporous titania as anode of lithium-ion batteries through annealing of pure titanium foils. 2018. 27(1): p. 250-263.
- Rahman, M.A., X. Wang, and C.J.J.o.E.C. Wen, Enhanced electrochemical performance of Li-ion batteries with nanoporous titania as negative electrodes. 2015. 24(2): p. 157-170.
- Kavan, L., M.J.E. Graetzel, and S.-S. Letters, Facile synthesis of nanocrystalline Li4Ti5 O 12 (Spinel) exhibiting fast Li insertion. 2001. 5(2): p. A39.
- Kavan, L., D. Fattakhova, and P.J.J.o.t.E.S. Krtil, Lithium Insertion into Mesoscopic and Single‐Crystal TiO2 (Rutile) Electrodes. 1999. 146(4): p. 1375.
- Zachau-Christiansen, B., et al., Lithium insertion in different TiO2 modifications. 1988. 28: p. 1176-1182.
- Macklin, W. and R.J.S.S.I. Neat, Performance of titanium dioxide-based cathodes in a lithium polymer electrolyte cell. 1992. 53: p. 694-700.
- Koudriachova, M.V., N.M. Harrison, and S.W.J.S.S.I. de Leeuw, Diffusion of Li-ions in rutile. An ab initio study. 2003. 157(1-4): p. 35-38.
- Johnson, O.J.P.R., One-dimensional diffusion of Li in rutile. 1964. 136(1A): p. A284.
- Koudriachova, M.V., N.M. Harrison, and S.W.J.P.R.L. de Leeuw, Effect of diffusion on lithium intercalation in titanium dioxide. 2001. 86(7): p. 1275.
- Ruan, C., et al., Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. 2005. 109(33): p. 15754-15759.
- Moradi, B. and G.G.J.J.o.A.E. Botte, Recycling of graphite anodes for the next generation of lithium ion batteries. 2016. 46: p. 123-148.
- Wang, R., et al., Degradation analysis of lithium-ion batteries under ultrahigh-rate discharge profile. 2024. 376: p. 124241.
- Munonde, T.S. and M.C.J.J.o.E.S. Raphulu, Review on titanium dioxide nanostructured electrode materials for high-performance lithium batteries. 2024. 78: p. 110064.
- Paul, S., et al., TiO2 as an Anode of high-performance lithium-ion batteries: A Comprehensive Review towards Practical Application. 2022. 12(12): p. 2034.
- Zhang, Y., et al., Nanostructured TiO2‐Based Anode Materials for High‐Performance Rechargeable Lithium‐Ion Batteries. 2016. 2(8): p. 764-775.
- Paul, S., et al., Nanostructured anatase TiO2 as anode of high‐performance lithium‐ion batteries. 2022. 1(4): p. 20220018.
- Wang, L., S. Riedel, and Z.J.A.E.M. Zhao‐Karger, Challenges and Progress in Anode‐Electrolyte Interfaces for Rechargeable Divalent Metal Batteries. 2024: p. 2402157.
- Xu, J., et al., Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries. 2007. 52(28): p. 8044-8047.
- Jiang, Y., et al., Fabrication strategies for high-rate TiO2 nanotube anodes for Li ion energy storage. 2020. 463: p. 228205.
References
Chy, M.N.U., et al., MXene as Promising Anode Material for High-Performance Lithium-Ion Batteries: A Comprehensive Review. 2024. 14(7): p. 616.
Rahman, M.A., et al., Improvement on electrochemical performances of nanoporous titania as anode of lithium-ion batteries through annealing of pure titanium foils. 2018. 27(1): p. 250-263.
Rahman, M.A., X. Wang, and C.J.J.o.E.C. Wen, Enhanced electrochemical performance of Li-ion batteries with nanoporous titania as negative electrodes. 2015. 24(2): p. 157-170.
Kavan, L., M.J.E. Graetzel, and S.-S. Letters, Facile synthesis of nanocrystalline Li4Ti5 O 12 (Spinel) exhibiting fast Li insertion. 2001. 5(2): p. A39.
Kavan, L., D. Fattakhova, and P.J.J.o.t.E.S. Krtil, Lithium Insertion into Mesoscopic and Single‐Crystal TiO2 (Rutile) Electrodes. 1999. 146(4): p. 1375.
Zachau-Christiansen, B., et al., Lithium insertion in different TiO2 modifications. 1988. 28: p. 1176-1182.
Macklin, W. and R.J.S.S.I. Neat, Performance of titanium dioxide-based cathodes in a lithium polymer electrolyte cell. 1992. 53: p. 694-700.
Koudriachova, M.V., N.M. Harrison, and S.W.J.S.S.I. de Leeuw, Diffusion of Li-ions in rutile. An ab initio study. 2003. 157(1-4): p. 35-38.
Johnson, O.J.P.R., One-dimensional diffusion of Li in rutile. 1964. 136(1A): p. A284.
Koudriachova, M.V., N.M. Harrison, and S.W.J.P.R.L. de Leeuw, Effect of diffusion on lithium intercalation in titanium dioxide. 2001. 86(7): p. 1275.
Ruan, C., et al., Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. 2005. 109(33): p. 15754-15759.
Moradi, B. and G.G.J.J.o.A.E. Botte, Recycling of graphite anodes for the next generation of lithium ion batteries. 2016. 46: p. 123-148.
Wang, R., et al., Degradation analysis of lithium-ion batteries under ultrahigh-rate discharge profile. 2024. 376: p. 124241.
Munonde, T.S. and M.C.J.J.o.E.S. Raphulu, Review on titanium dioxide nanostructured electrode materials for high-performance lithium batteries. 2024. 78: p. 110064.
Paul, S., et al., TiO2 as an Anode of high-performance lithium-ion batteries: A Comprehensive Review towards Practical Application. 2022. 12(12): p. 2034.
Zhang, Y., et al., Nanostructured TiO2‐Based Anode Materials for High‐Performance Rechargeable Lithium‐Ion Batteries. 2016. 2(8): p. 764-775.
Paul, S., et al., Nanostructured anatase TiO2 as anode of high‐performance lithium‐ion batteries. 2022. 1(4): p. 20220018.
Wang, L., S. Riedel, and Z.J.A.E.M. Zhao‐Karger, Challenges and Progress in Anode‐Electrolyte Interfaces for Rechargeable Divalent Metal Batteries. 2024: p. 2402157.
Xu, J., et al., Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries. 2007. 52(28): p. 8044-8047.
Jiang, Y., et al., Fabrication strategies for high-rate TiO2 nanotube anodes for Li ion energy storage. 2020. 463: p. 228205.