Properties of turbulent non-premixed methane/air flames in a miniature-scale swirl burner under different coaxial airflow swirl numbers
Corresponding Author(s) : Soroush Sheykhbaglou
Future Energy,
Vol. 2 No. 1 (2023): February 2023 Issue
Abstract
This study investigates the dynamics and properties of non-premixed methane/air flames under three swirl numbers by segmenting flame images using the Otsu thresholding technique. Under three operating conditions, the lean blow out (LBO) and flame length, lift-off height, maximum width, flame angle, and flame pulsing displacements in terms of flame center of gravity, length, and width are measured and compared. A high-speed camera is used to record video of flames, and the image processing of frames collected from a high-speed video was accomplished by using the intermittency distribution method to quantitatively compare flame attributes. The findings show that increasing the swirl number from 0.5 to 0.7 generally has an unfavorable effect on the LBO at given fuel flow rates, and the LBO of flames under 35° (0.6 swirl number) and 40° (0.7 swirl number) swirlers has decreased up to about 15% and 40%, respectively when compared with a 30° swirler (0.5 swirl number). Additionally, observations indicate that the flame length (L) and lift-off height (LO) drop as the swirl number rises, although the flame width (W) and angle show an ascending tendency. Besides, flame lift-off reveals an increasing-decreasing trend with an increment in the airflow, and flame length decreases as the airflow rate increases. It was also observed that flame pulsating displacements in terms of center of gravity, length, and width increases with an increase in the fuel flow rate, and as the swirl number is increased, and lessens, while increases.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Houssein EH, El-din Helmy B, Oliva D, Elngar AA, Shaban H. Multi-level Thresholding Image Segmentation Based on Nature-Inspired Optimization Algorithms: A Comprehensive Review. In: Oliva D, Houssein EH, Hinojosa S, editors. Metaheuristics in Machine Learning: Theory and Applications. Cham: Springer International Publishing; 2021. p. 239-65.
- Oliva D, Cuevas E. Digital Image Segmentation as an Optimization Problem. In: Oliva D, Cuevas E, editors. Advances and Applications of Optimised Algorithms in Image Processing. Cham: Springer International Publishing; 2017. p. 43-91.
- Xi Z, Fu Z, Hu X, Sabir SW, Jiang Y. An Investigation on Flame Shape and Size for a High-Pressure Turbulent Non-Premixed Swirl Combustion. Energies. 2018;11(4). doi: 10.3390/en11040930.
- Huang L, Liu C, Deng T, Jiang H, Wu P. Experimental investigation on the influence of central airflow on swirl combustion stability and flame shape. Journal of Thermal Analysis and Calorimetry. 2021;144(2):503-14. doi: 10.1007/s10973-020-10399-2.
- Zhang S, Cheng X, Zhu K, Yao Y, Shi L, Zhang H. Experimental study on curved flame characteristics under longitudinal ventilation in a subway tunnel. Applied Thermal Engineering. 2017;114:733-43. doi: https://doi.org/10.1016/j.applthermaleng.2016.12.023.
- Gao W, Liu N, Jiao Y, Xie X, Pan Y, Li Z, et al. Flame length of non-buoyant turbulent slot flame. Proceedings of the Combustion Institute. 2019;37(3):3843-50. doi: https://doi.org/10.1016/j.proci.2018.05.152.
- Sun X, Hu L, Ren F, Hu K. Flame height and temperature profile of window ejected thermal plume from compartment fire without facade wall. International Journal of Thermal Sciences. 2018;127:53-60. doi: https://doi.org/10.1016/j.ijthermalsci.2018.01.015.
- Xie K, Cui Y, Wang C, Cui G, Wang G, Qiu X, et al. Study on threshold selection method of continuous flame images of spray combustion in the low-pressure chamber. Case Studies in Thermal Engineering. 2021;26:101195. doi: https://doi.org/10.1016/j.csite.2021.101195.
- Tao C, Liu B, Dou Y, Qian Y, Zhang Y, Meng S. The experimental study of flame height and lift-off height of propane diffusion flames diluted by carbon dioxide. Fuel. 2021;290:119958. doi: https://doi.org/10.1016/j.fuel.2020.119958.
- Zhou Z, Chen G, Zhou C, Hu K, Zhang Q. Experimental study on determination of flame height and lift-off distance of rectangular source fuel jet fires. Applied Thermal Engineering. 2019;152:430-6. doi: https://doi.org/10.1016/j.applthermaleng.2019.02.094.
- Maynard TB, Butta JW. A Physical Model for Flame Height Intermittency. Fire Technology. 2018;54(1):135-61. doi: 10.1007/s10694-017-0678-7.
- Sheykhbaglou S, Robati SM. Effects of coaxial airflow swirl number on combustion and flame characteristics of methane/air and n-butane/air flames in a miniature-scale swirl burner. Engineering Research Express. 2022;4(2):025045. doi: http://dx.doi.org/10.1088/2631-8695/ac77dc.
- Gao W, Liu N, Jiao Y, Xie X, Pan Y, Li Z, et al. Flame length of buoyant turbulent slot flame. Proceedings of the Combustion Institute. 2019;37(3):3851-8. doi: https://doi.org/10.1016/j.proci.2018.05.153.
- Zheng L, Yu M, Yu S, Lu C. Measurement of Flame Height by Image Processing Method. Advanced Materials Research. 2011;301-303:983-8. doi: 10.4028/www.scientific.net/AMR.301-303.983.
- Liu T, Bai F, Zhao Z, Lin Y, Du Q, Peng Z. Large Eddy Simulation Analysis on Confined Swirling Flows in a Gas Turbine Swirl Burner. Energies. 2017;10(12). doi: 10.3390/en10122081.
- O'Connor J, Lieuwen T. Recirculation zone dynamics of a transversely excited swirl flow and flame. Physics of Fluids. 2012;24. doi: 10.1063/1.4731300.
- Feikema D, Chen R-H, Driscoll JF. Enhancement of flame blowout limits by the use of swirl. Combustion and Flame. 1990;80(2):183-95. doi: https://doi.org/10.1016/0010-2180(90)90126-C.
- Fernandez-Pello AC. Micropower generation using combustion: Issues and approaches. Proceedings of the Combustion Institute. 2002;29(1):883-99. doi: https://doi.org/10.1016/S1540-7489(02)80113-4.
- Ju Y, Cadou C, Maruta K. Microscale Combustion and Power Generation. Momentum Press; 2014.
- Kyritsis DC, Roychoudhury S, McEnally CS, Pfefferle LD, Gomez A. Mesoscale combustion: a first step towards liquid fueled batteries. Experimental Thermal and Fluid Science. 2004;28(7):763-70. doi: https://doi.org/10.1016/j.expthermflusci.2003.12.014
- Maruta K. Micro and mesoscale combustion. Proceedings of the Combustion Institute. 2011;33(1):125-50. doi: https://doi.org/10.1016/j.proci.2010.09.005.
- Sheykhbaglou S, Robati SM. Development of a small power generation system with a miniature-scale swirl burner, controlled heat transfer, and thermoelectric generators. Engineering Research Express. 2022;4(2):025006. doi: https://doi.org/10.1088/2631-8695/ac6281.
- Lefebvre AH, Ballal DR. Gas Turbine Combustion: Alternative Fuels and Emissions, Third Edition. Taylor & Francis; 2010.
- Alsulami R, Windom B. Liquid Jet Fuel Property Impacts on Combustion Performance. Journal of Propulsion and Power. 2020;37. doi: 10.2514/1.B38209.
- Sheykhbaglou S, Karami S. Comparative study on threshold selection for measuring characteristics of turbulent swirling flames in a miniature-scale swirl burner. Signal, Image and Video Processing. 2022. doi: 10.1007/s11760-022-02344-7.
- Patel V, Shah R. Experimental investigation on flame appearance and emission characteristics of LPG inverse diffusion flame with swirl. Applied Thermal Engineering. 2018;137:377-85. doi: https://doi.org/10.1016/j.applthermaleng.2018.03.105.
- Yoon J, Kim M-K, Hwang J, Lee J, Yoon Y. Effect of fuel–air mixture velocity on combustion instability of a model gas turbine combustor. Applied Thermal Engineering. 2013;54(1):92-101. doi: https://doi.org/10.1016/j.applthermaleng.2013.01.032.
- Xiong C, Liu Y, Fan H, Huang X, Nakamura Y. Fluctuation and extinction of laminar diffusion flame induced by external acoustic wave and source. Scientific Reports. 2021;11(1):14402. doi: https://doi.org/10.1038/s41598-021-93648-0.
References
Houssein EH, El-din Helmy B, Oliva D, Elngar AA, Shaban H. Multi-level Thresholding Image Segmentation Based on Nature-Inspired Optimization Algorithms: A Comprehensive Review. In: Oliva D, Houssein EH, Hinojosa S, editors. Metaheuristics in Machine Learning: Theory and Applications. Cham: Springer International Publishing; 2021. p. 239-65.
Oliva D, Cuevas E. Digital Image Segmentation as an Optimization Problem. In: Oliva D, Cuevas E, editors. Advances and Applications of Optimised Algorithms in Image Processing. Cham: Springer International Publishing; 2017. p. 43-91.
Xi Z, Fu Z, Hu X, Sabir SW, Jiang Y. An Investigation on Flame Shape and Size for a High-Pressure Turbulent Non-Premixed Swirl Combustion. Energies. 2018;11(4). doi: 10.3390/en11040930.
Huang L, Liu C, Deng T, Jiang H, Wu P. Experimental investigation on the influence of central airflow on swirl combustion stability and flame shape. Journal of Thermal Analysis and Calorimetry. 2021;144(2):503-14. doi: 10.1007/s10973-020-10399-2.
Zhang S, Cheng X, Zhu K, Yao Y, Shi L, Zhang H. Experimental study on curved flame characteristics under longitudinal ventilation in a subway tunnel. Applied Thermal Engineering. 2017;114:733-43. doi: https://doi.org/10.1016/j.applthermaleng.2016.12.023.
Gao W, Liu N, Jiao Y, Xie X, Pan Y, Li Z, et al. Flame length of non-buoyant turbulent slot flame. Proceedings of the Combustion Institute. 2019;37(3):3843-50. doi: https://doi.org/10.1016/j.proci.2018.05.152.
Sun X, Hu L, Ren F, Hu K. Flame height and temperature profile of window ejected thermal plume from compartment fire without facade wall. International Journal of Thermal Sciences. 2018;127:53-60. doi: https://doi.org/10.1016/j.ijthermalsci.2018.01.015.
Xie K, Cui Y, Wang C, Cui G, Wang G, Qiu X, et al. Study on threshold selection method of continuous flame images of spray combustion in the low-pressure chamber. Case Studies in Thermal Engineering. 2021;26:101195. doi: https://doi.org/10.1016/j.csite.2021.101195.
Tao C, Liu B, Dou Y, Qian Y, Zhang Y, Meng S. The experimental study of flame height and lift-off height of propane diffusion flames diluted by carbon dioxide. Fuel. 2021;290:119958. doi: https://doi.org/10.1016/j.fuel.2020.119958.
Zhou Z, Chen G, Zhou C, Hu K, Zhang Q. Experimental study on determination of flame height and lift-off distance of rectangular source fuel jet fires. Applied Thermal Engineering. 2019;152:430-6. doi: https://doi.org/10.1016/j.applthermaleng.2019.02.094.
Maynard TB, Butta JW. A Physical Model for Flame Height Intermittency. Fire Technology. 2018;54(1):135-61. doi: 10.1007/s10694-017-0678-7.
Sheykhbaglou S, Robati SM. Effects of coaxial airflow swirl number on combustion and flame characteristics of methane/air and n-butane/air flames in a miniature-scale swirl burner. Engineering Research Express. 2022;4(2):025045. doi: http://dx.doi.org/10.1088/2631-8695/ac77dc.
Gao W, Liu N, Jiao Y, Xie X, Pan Y, Li Z, et al. Flame length of buoyant turbulent slot flame. Proceedings of the Combustion Institute. 2019;37(3):3851-8. doi: https://doi.org/10.1016/j.proci.2018.05.153.
Zheng L, Yu M, Yu S, Lu C. Measurement of Flame Height by Image Processing Method. Advanced Materials Research. 2011;301-303:983-8. doi: 10.4028/www.scientific.net/AMR.301-303.983.
Liu T, Bai F, Zhao Z, Lin Y, Du Q, Peng Z. Large Eddy Simulation Analysis on Confined Swirling Flows in a Gas Turbine Swirl Burner. Energies. 2017;10(12). doi: 10.3390/en10122081.
O'Connor J, Lieuwen T. Recirculation zone dynamics of a transversely excited swirl flow and flame. Physics of Fluids. 2012;24. doi: 10.1063/1.4731300.
Feikema D, Chen R-H, Driscoll JF. Enhancement of flame blowout limits by the use of swirl. Combustion and Flame. 1990;80(2):183-95. doi: https://doi.org/10.1016/0010-2180(90)90126-C.
Fernandez-Pello AC. Micropower generation using combustion: Issues and approaches. Proceedings of the Combustion Institute. 2002;29(1):883-99. doi: https://doi.org/10.1016/S1540-7489(02)80113-4.
Ju Y, Cadou C, Maruta K. Microscale Combustion and Power Generation. Momentum Press; 2014.
Kyritsis DC, Roychoudhury S, McEnally CS, Pfefferle LD, Gomez A. Mesoscale combustion: a first step towards liquid fueled batteries. Experimental Thermal and Fluid Science. 2004;28(7):763-70. doi: https://doi.org/10.1016/j.expthermflusci.2003.12.014
Maruta K. Micro and mesoscale combustion. Proceedings of the Combustion Institute. 2011;33(1):125-50. doi: https://doi.org/10.1016/j.proci.2010.09.005.
Sheykhbaglou S, Robati SM. Development of a small power generation system with a miniature-scale swirl burner, controlled heat transfer, and thermoelectric generators. Engineering Research Express. 2022;4(2):025006. doi: https://doi.org/10.1088/2631-8695/ac6281.
Lefebvre AH, Ballal DR. Gas Turbine Combustion: Alternative Fuels and Emissions, Third Edition. Taylor & Francis; 2010.
Alsulami R, Windom B. Liquid Jet Fuel Property Impacts on Combustion Performance. Journal of Propulsion and Power. 2020;37. doi: 10.2514/1.B38209.
Sheykhbaglou S, Karami S. Comparative study on threshold selection for measuring characteristics of turbulent swirling flames in a miniature-scale swirl burner. Signal, Image and Video Processing. 2022. doi: 10.1007/s11760-022-02344-7.
Patel V, Shah R. Experimental investigation on flame appearance and emission characteristics of LPG inverse diffusion flame with swirl. Applied Thermal Engineering. 2018;137:377-85. doi: https://doi.org/10.1016/j.applthermaleng.2018.03.105.
Yoon J, Kim M-K, Hwang J, Lee J, Yoon Y. Effect of fuel–air mixture velocity on combustion instability of a model gas turbine combustor. Applied Thermal Engineering. 2013;54(1):92-101. doi: https://doi.org/10.1016/j.applthermaleng.2013.01.032.
Xiong C, Liu Y, Fan H, Huang X, Nakamura Y. Fluctuation and extinction of laminar diffusion flame induced by external acoustic wave and source. Scientific Reports. 2021;11(1):14402. doi: https://doi.org/10.1038/s41598-021-93648-0.