Unifying thermodynamic and mechanical stability in perovskites: a computational approach for advanced applications

Downloads
Perovskite materials hold immense potential for advanced technologies, yet their practical deployment is hindered by an insufficient understanding of the interplay between thermodynamic and mechanical stability. This study bridges this critical gap by developing a unified computational framework that integrates both stability dimensions, enabling the rational design of perovskites for demanding applications. Leveraging pre-computed density functional theory data from The Materials Project and AFLOW databases, 44 perovskite materials are analyzed. Thermodynamic stability is assessed via formation energy and energy above hull, while mechanical stability is quantified through bulk modulus, shear modulus, and Pugh’s ratio. A novel combined stability index is introduced, employing geometric mean aggregation of normalized metrics to prioritize balanced performance. Key findings reveal that Ba-based perovskites exhibit superior thermodynamic stability and mechanical resilience. This work provides a computational blueprint for synthesizing perovskites tailored to applications requiring durability under thermal and mechanical stress, such as photovoltaics and catalysis. By correlating composition-structure-property relationships, the study advances the design of next-generation materials, emphasizing the necessity of holistic stability metrics.
L. Sanga, C. Lalengmawia, Z. Renthlei, S. T. Chanu, L. Hima, N. S. Singh, A. Yvaz, S. Bhattarai, D.P. Rai, (2025). A review on perovskite materials for photovoltaic applications, Next Materials, 7, 100494. doi.org/10.1016/j.nxmate.2025.100494.
Q. Sun and W.-J. Yin, (2017). Thermodynamic Stability Trend of Cubic Perovskites, J. of the American Chem. Society, 139:42, 14905-14908. doi.org/10.1021/jacs.7b09379.
W. Li, R. Jacobs, D. Morgan, (2018). Predicting the thermodynamic stability of perovskite oxides using machine learning models, Computational Materials Science, 150, 454-463, doi.org/10.1016/j.commatsci.2018.04.033.
S. Kim, T. Eom, Y.-S. Ha, K.-H. Hong, and H. Kim, (2020). Thermodynamics of Multicomponent Perovskites: A Guide to Highly Efficient and Stable Solar Cell Materials, Chemistry of Materials, 32:10, 4265-4272, doi.org/10.1021/acs.chemmater.0c00893.
Z. U. Rehman and Z. Lin, (2024). First-principles investigation of the structural stability, electronic, and thermodynamic properties of Ba2NaHaO6 (Ha = Cl, Br, I) periodate double perovskites, J. Mater. Chem. A, 12, 8846-8861, doi.org/10.1039/D3TA06721A.
S. Belhachi, S. Al-Qaisi, S. Samah, H. Rached, A. Zaman, T. A. Alrebdi, A. Boutramine, N. Erum, R. Ahmed & A. S. Verma, (2025). DFT Analysis of Ba2NbRhO6: A Promising Double Perovskite for Sustainable Energy Applications, J Inorg Organomet Polym, 35, 978–993, doi.org/10.1007/s10904-024-03336-5.
Md. F. Rahman, Md. H. Rahman, A. Kuddus, A. R. Chaudhry, and A. Irfan, (2024). Unveiling the Structural, Electronic, Optical, Mechanical, and Photovoltaic Properties of Lead-Free Inorganic New Ba3MBr3 (M = As, N, P, and Sb) Perovskites, Energy & Fuels, 38:8, 7260-7278, doi.org/10.1021/acs.energyfuels.4c00084.
S. Körbel, M. A. L. Marques and S. Botti, (2016). Stability and electronic properties of new inorganic perovskites from high-throughput ab initio calculations, J. Mater. Chem. C, 4, 3157-3167, doi.org/10.1039/C5TC04172D.
D. Pottmaier, E. R. Pinatel, J. G. Vitillo, S. Garroni, M. Orlova, M. D. Baró, G. B. M. Vaughan, M. Fichtner, W. Lohstroh, and M. Baricco, (2011). Structure and Thermodynamic Properties of the NaMgH3 Perovskite: A Comprehensive Study, Chemistry of Materials, 23:9, 2317-2326, doi.org/10.1021/cm103204p.
R. Lu, A. M. Hofmeister, Y. Wang, (1994). Thermodynamic properties of ferromagnesium silicate perovskites from vibrational spectroscopy, Journal of Geophysical Research: Solid Earth, 99:B6, 11795-11804, doi.org/10.1029/94JB00501.
B. A. Rosales, K. Schutt, J. J. Berry, and L. M. Wheeler, (2023). ACS Energy Letters, 8:4, 1705-1715, doi.org/10.1021/acsenergylett.2c02698.
R. Jaafreh, A. Sharan, M. Sajjad, N. Singh, K. Hamad, (2023). A Machine Learning-Assisted Approach to a Rapid and Reliable Screening for Mechanically Stable Perovskite-Based Materials, Adv. Funct. Mater., 33, 2210374, doi.org/10.1002/adfm.202210374.
F. Song, D. Zheng, J. Feng, J. Liu, T. Ye, Z. Li, K. Wang, S. F. Liu, D. Yang, (2024). Mechanical Durability and Flexibility in Perovskite Photovoltaics: Advancements and Applications, Adv. Mater., 36, 2312041, doi.org/10.1002/adma.202312041.
N. Rolston, A. D. Printz, J. M. Tracy, H. C. Weerasinghe, D. Vak, L. J. Haur, A. Priyadarshi, N. Mathews, D. J. Slotcavage, M. D. McGehee, R. E. Kalan, K. Zielinski, R. L. Grimm, H. Tsai, W. Nie, A. D. Mohite, S. Gholipour, M. Saliba, M. Grätzel, R. H. Dauskardt, (2018). Effect of Cation Composition on the Mechanical Stability of Perovskite Solar Cells , Adv. Energy Mater., 8, 1702116, doi.org/10.1002/aenm.201702116.
A.S. Verma, A. Kumar, (2012). Bulk modulus of cubic perovskites, J. of Alloys and Compounds, 541, 210-214, doi.org/10.1016/j.jallcom.2012.07.027.
J. Kung & S. Rigden, (1999). Oxide perovskites: pressure derivatives of the bulk and shear moduli, Phys Chem Min, 26, 234–241, doi.org/10.1007/s002690050182.
J. Yu, M. Wang, and S. Lin, (2016). Probing the Soft and Nanoductile Mechanical Nature of Single and Polycrystalline Organic–Inorganic Hybrid Perovskites for Flexible Functional Devices, ACS Nano, 10:12, 11044-11057, doi.org/10.1021/acsnano.6b05913.
Y. Gupta, S. Rathore, A. Singh, A. Kumar, (2022). Tailoring the mechanical response of Ruddlesden Popper lead halide perovskites, J. of Alloys and Compounds, 901, 163575, doi.org/10.1016/j.jallcom.2021.163575.
A. Bakar, A. O. Alrashdi, M. M. Fadhali, A. Afaq, H.A. Yakout, M. Asif, (2022). Effect of pressure on structural, elastic and mechanical properties of cubic perovskites XCoO3 (X = Nd, Pr) from first-principles investigations, J. of Materials Research and Technology, 19, 4233-4241, doi.org/10.1016/j.jmrt.2022.06.126.
M. Boubchir, R. Boubchir, H. Aourag, (2022).The Principal Component Analysis as a tool for predicting the mechanical properties of Perovskites and Inverse Perovskites, Chemical Physics Letters, 798, 139615, doi.org/10.1016/j.cplett.2022.139615.
J.Y. Al-Humaidi, Abdullah, Amina, J. Akhtar, A. Algahtani, V. Tirth, S. Abdullaev, M. S. Refat, M. Aslam & A. Zaman, (2024). Electronic Structural, Optical and Elastic Properties of K-Based Lead-Free Perovskites KXF3 (X = Nb, Ti, Zr) via DFT Computational Approach, J Inorg Organomet Polym, 34, 1643–1653, doi.org/10.1007/s10904-023-02905-4.
P. Sánchez-Palencia, G. García, P. Wahnón and P. Palacios, (2021). The effects of the chemical composition on the structural, thermodynamic, and mechanical properties of all-inorganic halide perovskites, Inorg. Chem. Front., 8, 3803-3814, doi.org/10.1039/D1QI00347J.
S. A. Khandy, I. Islam, D. C Gupta, R. Khenata, A. Laref and S. Rubab, (2018). DFT understandings of structural properties, mechanical stability and thermodynamic properties of BaCfO3 perovskite, Mater. Res. Express, 5, 105702, doi.org/10.1088/2053-1591/aad9eb.
E. K. Mahmoud, A. A. Farghali, S. I. El-dek & M. Taha, (2022). Structural stabilities, mechanical and thermodynamic properties of chalcogenide perovskite ABS3 (A = Li, Na, K, Rb, Cs; B = Si, Ge, Sn) from first-principles study, Eur. Phys. J. Plus, 137, 1006 doi.org/10.1140/epjp/s13360-022-03211-7.
T. I. Al-Muhimeed, (2024). Study of mechanical, thermodynamic, thermoelectric, and optical properties of Cs2SbAuX6 (X = Cl, Br, I) for energy harvesting applications, Materials Science in Semiconductor Processing, 78, 108443, doi.org/10.1016/j.mssp.2024.108443.
Q. Dai, Q.-Q. Liang, T.-Y. Tang, H.-X. Gao, S.-Q. Wu, Y.-L. Tang, (2024). The structural, stability, electronic, optical and thermodynamic properties of Ba2AsXO6(X = V, Nb, Ta)double perovskite oxides: A First-Principles study, Inorganic Chemistry Communications, 166, 112591, doi.org/10.1016/j.inoche.2024.112591.
S. A. Khandy, D. C. Gupta, (2020). Magneto-electronic, mechanical, thermoelectric and thermodynamic properties of ductile perovskite Ba2SmNbO6, Materials Chemistry and Physics, 239, 121983, doi.org/10.1016/j.matchemphys.2019.121983.
P. Zhang, B. Chen, W. Zhu, C. Wang, W. Zhang, Y. Li & W. Liu, (2020). First-principles prediction of structural, mechanical and thermal properties of perovskite BaZrS3, Eur. Phys. J. B, 93, 97 doi.org/10.1140/epjb/e2020-10082-9.
The Materials Project, (2025). https://next-gen.materialsproject.org/materials, Accessed on 03.12.2025.
AFLOW, (2025). Aflow - Automatic FLOW for Materials Discovery, https://aflowlib.org/, accessed on 03.15.2025.
A. Lamichhane, (2021). First-principles density functional theory studies on perovskite materials. PhD thesis. New Jersey Institute of Technology, 2021. 28321795. Retrieved from https://www.proquest.com/dissertations-theses/first-principles-density-functional-theory/docview/2556353068/se-2.
Q. Wei, H. Liang, Y. Haruta, M. Saidaminov, Q. Mi, M. Saliba, G. Cui, Z. Ning, (2023). From tetragonal to cubic: perovskite phase structure evolution for high-performance solar cells, Science Bulletin, 68:2, 141-145, doi.org/10.1016/j.scib.2023.01.008.
G. King and P. M. Woodward, (2010). Cation ordering in perovskites, J. Mater. Chem., 20, 5785-5796, doi.org/10.1039/B926757C.
M. P. Hautzinger, W. Mihalyi-Koch, and S. Jin, (2024). A-Site Cation Chemistry in Halide Perovskites, Chem. of Materials, 36:21, 10408-10420, doi.org/0.1021/acs.chemmater.4c02043
G. E. Eperon and D. S. Ginger, (2017). B-Site Metal Cation Exchange in Halide Perovskites, ACS Energy Letters, 2:5, 1190-1196, doi.org/10.1021/acsenergylett.7b00290.
D. J. Singh, M. Ghita, M. Fornari, & S. V. Halilov, (2006). Role of A-Site and B-Site Ions in Perovskite Ferroelectricity. Ferroelectrics, 338:1, 73–79. doi.org/10.1080/00150190600732694.
VASP, (2025). The Vienna Ab initio Simulation Package: atomic scale materials modelling from first principles, https://www.vasp.at/, accessed on 03.12.2025.
M. Ernzerhof, G. E. Scuseria; (1999) Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional, J. Chem. Phys., 110:11, 5029–5036. doi.org/10.1063/1.478401.
A. A. Awan, (2022). 21 Essential Python Tools, https://www.datacamp.com/tutorial/21-essential-python-tools, accessed on 12.03.2025.
A.-R. A. Ragab, S. E. A. Bayoumi, (1998). Engineering Solid Mechanics: Fundamentals and Applications, CRC Press, ISBN 10: 0849316073.
H. Li, Y. Chen, H. Wang, H. Wang, Y. Li, I. Harran, Y. Li, C. Guo, (2017). First-principles study of mechanical and thermodynamic properties of Ti-Ga intermetallic compounds, J. of Alloys and Compounds, 700, 208-214, doi.org/10.1016/j.jallcom.2017.01.052.
X.-Q. Chen, H. Niu, D. Li, Y. Li, (2011). Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics, 19:9, 1275-1281, doi.org/10.1016/j.intermet.2011.03.026.
S. I. Ranganathan and M. Ostoja-Starzewski, (2008). Universal Elastic Anisotropy Index, Phys. Rev. Lett., 101, 055504, doi.org/10.1103/PhysRevLett.101.055504.
I. H. Siegel, (1942). Index-Number Differences: Geometric Means. J. of the American Statistical Association, 37:218, 271–274, doi.org/10.1080/01621459.1942.10500636.