Scale and implementation of the possible solar-hydrogen system for island communities
Downloads
As technology progresses, there is an increase in possibilities of designing an independent and self-reliant energy source for small communities. Island and remote communities often have to rely on fuel transportation and main grid development for energy supply. By using renewable energy as an alternative choice for energy sources, small communities can remove hazardous emissions while saving money on fuels and shipping costs. Solar-to-Hydrogen (StH) microgrid is a system of solar panels and hydrogen energy systems that can capture and store solar energy for daily usage without fear of energy disruption during nighttime. Despite the initial high capital investment, the concept can be explored and implemented as the long-term economic benefits are present when the cost of electricity is high for remote locations. This study is dedicated to researching and designing a microgrid that can sustain a small community without the presence of 3rd energy source for these communities.
Hosseini, Seyed Ehsan. Fundamentals of Hydrogen Production and Utilization in Fuel Cell Systems. Elsevier, 2023. ISBN: 978-0-323-88671-0 DOI: https://doi.org/10.1016/C2020-0-03183-X
Choose Energy. (n.d.). Learn about electricity rates, providers, & plans: Choose energy®. Learn About Electricity Rates, Providers, & Plans | Choose Energy®. https://www.chooseenergy.com/electricity-rates/
Mariam, L., Basu, M., & Conlon, M. F. (2016). Microgrid: Architecture, policy and future trends. Renewable and Sustainable Energy Reviews, 64, 477–489. doi:10.1016/j.rser.2016.06.037
Ma, T., Yang, H., & Lu, L. (2014). A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island. Applied Energy, 121, 149–158. doi:10.1016/j.apenergy.2014.01.09
Li, Y., Gao, W., & Ruan, Y. (2019). Potential and sensitivity analysis of long-term hydrogen production in resolving surplus RES generation—a case study in Japan. Energy, 171, 1164–1172. doi:10.1016/j.energy.2019.01.106
Office of Energy Efficiency & Renewable Energy. (2021, September 1). Hydrogen shot. Energy.gov. https://www.energy.gov/eere/fuelcells/hydrogen-shot
Solargis. (n.d.). Global solar atlas. https://globalsolaratlas.info/map
Shahbazbegian, V., Shafie-khah, M., Laaksonen, H., Strbac, G., & Ameli, H. (2023). Resilience-oriented operation of microgrids in the presence of power-to-hydrogen systems. Applied Energy, 348. https://doi.org/10.1016/j.apenergy.2023.121429
Nakamura, Y., Aoki, M., Kado, Y., & Iki, H. (2021). Study on operation in microgrid including hydrogen supplying equipment for contributing power system operation. Electrical Engineering in Japan, 214(2). doi:10.1002/eej.23329
Google. (n.d.). Google earth. https://earth.google.com/web/search/arkansastech+university/@35.29730806,-93.13570327,108.25093027a,289.08682634d,35y,-0.00678014h,67.09981852t,0r/data=CigiJgokCRJqRmpbn0BAEeyyuZOZnkBAGf9AOr3d91vAIdHEfuCigiJgokCRJqRmpbn0BAEeyyuZOZnkBAGf9AOr3d91vAIdHEfu-y-FvAOgMKATA
U.S. Energy Information Administration - EIA - independent statistics and analysis. Energy Information Administration (EIA)- About the Commercial Buildings Energy Consumption Survey (CBECS). (n.d.). https://www.eia.gov/consumption/commercial/data/2012/c&e/cfm/pba4.php
Almerini, A. (2023, April 12). How many kwh does a house use?. Solar Reviews. https://www.solarreviews.com/blog/how-many-kwh-does-a-house-use#:~:text=Based%20on%20the%20average%20home,different%2Dsized%20homes%20might%20use
Parra, D., Gillott, M., & Walker, G. S. (2016). Design, testing and evaluation of a community hydrogen storage system for end user applications. International Journal of Hydrogen Energy, 41(10). https://doi.org/10.1016/j.ijhydene.2016.01.098
Li, B., Roche, R., Paire, D., & Miraoui, A. (2017). Sizing of a stand-alone microgrid considering electric power, cooling/heating, hydrogen loads and hydrogen storage degradation. Applied Energy, 205, 1244–1259. doi:10.1016/j.apenergy.2017.08.142
Honsberg, C., & Bowden, S. (n.d.). Average solar radiation. PVEducation. https://www.pveducation.org/pvcdrom/properties-of-sunlight/average-solar-radiation
Walker, E. (2023, May 18). What are the most efficient solar panels? top brands in 2023. EnergySage. https://www.energysage.com/solar/what-are-the-most-efficient-solar-panels-on-the-market/
National Renewable Energy Laboratory. (n.d.). Best research-cell efficiency chart. Photovoltaic Research. https://www.nrel.gov/pv/cell-efficiency.html
AL Shaqsi, A. Z., Sopian, K., & Al-Hinai, A. (2020). Review of energy storage services, applications, limitations, and benefits. Energy Reports. doi:10.1016/j.egyr.2020.07.028
Bizuayehu, A. W., Medina, P., Catalao, J. P. S., Rodrigues, E. M. G., & Contreras, J. (2014). Analysis of electrical energy storage technologies’ state-of-the-art and applications on islanded grid systems. 2014 IEEE PES T&D Conference and Exposition. doi:10.1109/tdc.2014.6863361
P. Medina, A. W. Bizuayehu, J. P. S. Catalão, E. M. G. Rodrigues and J. Contreras, "Electrical Energy Storage Systems: Technologies' State-of-the-Art, Techno-economic Benefits and Applications Analysis," 2014 47th Hawaii International Conference on System Sciences, Waikoloa, HI, USA, 2014, pp. 2295-2304, doi: 10.1109/HICSS.2014.290.
Hlal, M. I., Ramachandaramurthy, V. K., Sarhan, A., Pouryekta, A., & Subramaniam, U. (2019). Optimum battery depth of discharge for off-grid solar PV/battery system. Journal of Energy Storage, 26, 100999. doi:10.1016/j.est.2019.100999
Alramlawi, M., & Li, P. (2020). Design Optimization of a Residential PV-Battery Microgrid with a Detailed Battery Lifetime Estimation Model. IEEE Transactions on Industry Applications, 1–1. doi:10.1109/tia.2020.2965894
Sun, H., Zhang, G., Guo, L., & Liu, H. (2009). A Study of dynamic characteristics of PEM fuel cells by measuring local currents. International Journal of Hydrogen Energy, 34(13), 5529–5536. doi:10.1016/j.ijhydene.2009.04.06
Kafetzis, A., Ziogou, C., Panopoulos, K. D., Papadopoulou, S., Seferlis, P., & Voutetakis, S. (2020). Energy management strategies based on hybrid automata for islanded microgrids with renewable sources, batteries and hydrogen. Renewable and Sustainable Energy Reviews, 134. https://doi.org/10.1016/j.rser.2020.110118
Rey, J., Segura, F., Andújar, J. M., & Ferrario, A. M. (2023). The economic impact and carbon footprint dependence of energy management strategies in hydrogen-based microgrids. Electronics, 12(17), 3703. https://doi.org/10.3390/electronics12173703
Carmo, M. (2022, January 26). Introduction to Liquid Alkaline Electrolysis. Department of Energy. https://www.energy.gov/sites/default/files/2022-02/2-Intro-Liquid%20Alkaline%20Workshop.pdf
Ebbesen, S. D., Jensen, S. H., Hauch, A., & Mogensen, M. B. (2014). High Temperature Electrolysis in Alkaline Cells, Solid Proton Conducting Cells, and Solid Oxide Cells. Chemical Reviews, 114(21), 10697–10734. doi:10.1021/cr5000865
Luo, Y., Shi, Y., & Cai, N. (2021). Bridging a bi-directional connection between electricity and fuels in hybrid multienergy systems. Hybrid Systems and Multi-Energy Networks for the Future Energy Internet, 41–84. https://doi.org/10.1016/b978-0-12-819184-2.00003-1
Mamlouk, M. (2022). Alkaline anion exchange membrane (AEM) water electrolysers—current/future perspectives in electrolysers for Hydrogen. Comprehensive Renewable Energy, 473–504. https://doi.org/10.1016/b978-0-12-819727-1.00103-5
Kamaroddin, M. F. A., Sabli, N., & Abdullah, T. A. T. (2018). Hydrogen Production by Membrane Water Splitting Technologies. Advances In Hydrogen Generation Technologies. doi:10.5772/intechopen.76727
Krishnan, S., Koning, V., Theodorus de Groot, M., de Groot, A., Mendoza, P. G., Junginger, M., & Kramer, G. J. (2023). Present and future cost of alkaline and PEM electrolyser stacks. International Journal of Hydrogen Energy, 48(83), 32313–32330. https://doi.org/10.1016/j.ijhydene.2023.05.031
Pozio, Alfonso & Bozza, Francesco & Nigliaccio, Giuseppe & Platter, Marzio & Monteleone, Giulia. (2021). Development perspectives on low-temperature electrolysis. 1. 66-72. 10.12910/EAI2021-014.
Martin, P. (2023, July 5). Green hydrogen: Which type of electrolyser should you use? alkaline, PEM, solid oxide or the latest tech?. Hydrogen news and intelligence | Hydrogen Insight. https://www.hydrogeninsight.com/electrolysers/green-hydrogen-which-type-of-electrolyser-should-you-use-alkaline-pem-solid-oxide-or-the-latest-tech-/2-1-1480577
Malla, K. (2023, February). Shortage of electrolyzers for green hydrogen. EY Pathenon.
Shiva Kumar, S., & Himabindu, V. (2019). Hydrogen Production by PEM Water Electrolysis – A Review. Materials Science for Energy Technologies. doi:10.1016/j.mset.2019.03.002
Lewinski KA, van der Vliet DF, Luopa SM (2015) NSTF Advances for PEM Electrolysis-The Effect of Alloying on Activity of NSTF Electrolyzer Catalysts and Performance of NSTF Based PEM Electrolyzers. ECS Trans 69:893–917
Wang, T., Cao, X. & Jiao, L. PEM water electrolysis for hydrogen production: fundamentals, advances, and prospects. Carb Neutrality 1, 21 (2022). https://doi.org/10.1007/s43979-022-00022-8
Tomić, A. Z., Pivac, I., & Barbir, F. (2023). A review of testing procedures for proton exchange membrane electrolyzer degradation. Journal of Power Sources, 557, 232569. https://doi.org/10.1016/j.jpowsour.2022.232569
Thunder Said Energy. (2023, January 27). Green hydrogen: Alkaline versus PEM electrolyser? - thunder said. Thunder Said Energy. https://thundersaidenergy.com/2023/01/17/green-hydrogen-alkaline-versus-pem-electrolysers/#:~:text=(9)%20Longevity%20implications.,are%2C%20by%20definition%2C%20acidic
Ferriday, T. B., & Middleton, P. H. (2021). Alkaline fuel cell technology - A review. International Journal of Hydrogen Energy, 46(35), 18489–18510. doi:10.1016/j.ijhydene.2021.02.203
Tomantschger, K., Findlay, R., Hanson, M., Kordesch, K., & Srinivasan, S. (1992). Degradation modes of alkaline fuel cells and their components. Journal of Power Sources, 39(1), 21–41. doi:10.1016/0378-7753(92)85003-s
Ni, M. (2005). Current Status of Fuel Cell Technologies. Energy Exploration & Exploitation, 23(3), 207–214. doi:10.1260/014459805774852083
Hosseini, Seyed Ehsan, Hydrogen Diplomacy. Future Publishing LLC, 2024. ISBN: 979-8-9906790-0-9
DOI: https://doi.org/10.55670/fpll.book/1
Tsuchiya H, Kobayashi O. Mass production cost of PEM fuel cell by learning curve. Int J Hydrogen Energy 2004;29:985–90.
Luo, Y., Shi, Y., & Cai, N. (2021a). Bridging a bi-directional connection between electricity and fuels in hybrid multienergy systems. Hybrid Systems and Multi-Energy Networks for the Future Energy Internet, 41–84. https://doi.org/10.1016/b978-0-12-819184-2.00003-1
Parra, D., Gillott, M., & Walker, G. S. (2016). Design, testing and evaluation of a community hydrogen storage system for end user applications. International Journal of Hydrogen Energy, 41(10). https://doi.org/10.1016/j.ijhydene.2016.01.098
Lipman, T. E., Edwards, J. L., & Kammen, D. M. (2004). Fuel cell system economics: comparing the costs of generating power with stationary and motor vehicle PEM fuel cell systems. Energy Policy, 32(1), 101–125. doi:10.1016/s0301-4215(02)00286-0
Stropnik, R., Mlakar, N., Lotrič, A., Sekavčnik, M., & Mori, M. (2022). The influence of degradation effects in proton exchange membrane fuel cells on life cycle assessment modelling and environmental impact indicators. International Journal of Hydrogen Energy, 47(57), 24223–24241. https://doi.org/10.1016/j.ijhydene.2022.04.011
Cheng, S., Hu, D., Hao, D., Yang, Q., Wang, J., Feng, L., & Li, J. (2022). Investigation and analysis of proton exchange membrane fuel cell dynamic response characteristics on hydrogen consumption of fuel cell vehicle. International Journal of Hydrogen Energy, 47(35), 15845–15864. https://doi.org/10.1016/j.ijhydene.2022.03.063
Agriculture and Horticulture Development Board (AHDB). (n.d.). Hydrogen electrolysis. AHDB. https://ahdb.org.uk/knowledge-library/hydrogen-electrolysis#:~:text=When%20used%20as%20part%20of,%2C%20or%20burning%2C%20the%20hydrogen
Business Energy Advisor. (2020, June 15). Business Energy Advisor. https://esource.bizenergyadvisor.com/article/colleges-and-universities
"PV Watts". NREL. Retrieved 11 June 2012. https://pvwatts.nrel.gov/
How much do solar panels cost? (expert reviewed). This Old House. (2023, July 26). https://www.thisoldhouse.com/solar-alternative-energy/reviews/solar-panel-cost
Cerri, I.; Lefebvre-Joud, F.; Holtappels, P.; Honegger, K.; Stubos, T.; Millet, P.; Coordination, J.; Pfrang, A.; Bielewski, M.; Tzimas, E. Strategic Energy Technology Plan; European Commission: Brussels, Belgium, 2012
Energy Sage. (n.d.). Compare and save on Clean Home Energy Solutions. Energy Sage. https://www.energysage.com/local-data/electricity-cost/ar/#:~:text=Electric%20rates%20in%20Arkansas,-The%20easiest%20way&text=The%20average%20residential%20electricity%20rate,rate%20of%2018%20%C2%A2%2FkWh.
U.S. Department of Energy. (2020, August). Martinique Energy Snapshot. Energy Transitions Initiative. https://www.nrel.gov/docs/fy20osti/76647.pdf
Howdle, D. (n.d.). Worldwide electricity pricing: Energy cost per kwh in 230 countries. Cable.co.uk. https://www.cable.co.uk/energy/worldwide-pricing/
Walker, E. (2022, December 12). How long do solar panels last? solar panel lifespan 101. EnergySage. https://www.energysage.com/solar/how-long-do-solar-panels-last/#:~:text=The%20industry%20standard%20for%20the,below%20what%20the%20manufacturer%20projected.
Statista Research Department. (2023, October 19). Battery price per kwh 2023. Statista. https://www.statista.com/statistics/883118/global-lithium-ion-battery-pack-costs/