Main Article Content

Abstract

Carbon emissions from non-renewable energy consumption account for 38 percent to 50 percent of conservatory smoke production in the world, and wastewater treatment plants happen to be one of the most significant drivers of orangery vapor discharges universally. So, to meet the target of achieving a significant reduction of carbon pollution in 2030, we must focus on energy savings and Waste Water Treatment Plant consumption reduction. The demand for future urban wastewater Treatment Plant construction and technical enhancements remains high. The energy ingestion of treatment plants is related development of influent plants, effluent standards, and so on. This study is meant to offer directions for emerging new strategies to facilitate the reduction of water scarcity now and in the future as a powerful and reliable form of treating wastewater technology in particular. This current study keeps its focus on the stimulus of guiding principle on treatment plant structure using scenario-based investigation. This article focuses on approaches used for water purification and the level of energy used. This research analyses the viability of energy self-sufficiency by examining existing energy consumption efficiency. It also investigates the water-energy link in plants and the sustainable approach to solving water scarcity problems, thereby providing the academic source for improving energy management systems and the formulation of energy policy and infrastructures. The research finds out that renewable energy is eco-friendly and is not regenerated by human efforts, nor does it emit any harmful gases into the atmosphere that could contribute to global warming, and it also notes that it is one of the major solutions to water scarcity problems now and later.

Keywords

Wastewater treatment plant Renewable energy Environment sustainability

Article Details

How to Cite
Gökçekuş, H. ., Kassem, Y., Fahnbulleh, A. Z. K., & Fallah Saah, R. (2022). Wastewater treatment plant and enhancing renewable energy production towards achieving environmental sustainability. Future Technology, 1(3), 14–25. Retrieved from https://fupubco.com/futech/article/view/40
Bookmark and Share

References

  1. Gleick, P. H. (2003). Global freshwater resources: soft-path solutions for the 21st century. Science, 302(5650), 1524-1528.
  2. Campana, P. E., Mainardis, M., Moretti, A., & Cottes, M. (2021). 100% renewable wastewater treatment plants: Techno-economic assessment using a modelling and optimization approach. Energy Conversion and Management, 239, 114214.
  3. Jane, M., Miriam, M., & Jackson, N. K. (2011). Up-scaling production of certified potato seed tubers in Kenya: Potential of aeroponics technology. Journal of Horticulture and Forestry, 3(8), 238-243.
  4. Thenkabail, P. S. (2010). Global croplands and their importance for water and food security in the twenty-first century: Towards an ever green revolution that combines a second green revolution with a blue revolution. Remote Sensing, 2(9), 2305-2312.
  5. Llácer-Iglesias, R. M., López-Jiménez, P. A., & Pérez-Sánchez, M. (2021). Hydropower Technology for Sustainable Energy Generation in Wastewater Systems: Learning from the Experience. Water, 13(22), 3259.
  6. Serageldin, M. (2001). Preserving a historic city: economic and social transformations of Fez. In Historic cities and sacred sites. Cultural roots for urban futures (pp. p-237).
  7. Seckler, D., Barker, R., & Amarasinghe, U. (1999). Water scarcity in the twenty-first century. International Journal of Water Resources Development, 15(1-2), 29-42.
  8. Richter, B. D., Mathews, R., Harrison, D. L., & Wigington, R. (2003). Ecologically sustainable water management: managing river flows for ecological integrity. Ecological applications, 13(1), 206-224.
  9. Postel, S. L., & Wolf, A. T. (2001). Dehydrating conflict. Foreign policy, (126), 60.
  10. Newton, P. W. (Ed.). (2008). Transitions: pathways towards sustainable urban development in Australia. Springer Science & Business Media.
  11. Rosegrant, M. W., Cai, X., & Cline, S. A. (2002). World water and food to 2025: dealing with scarcity. Intl Food Policy Res Inst.
  12. Kumar, K., Kumar, P., & Babu, M. (2010). Performance evaluation of waste water treatment plant. International Journal of Engineering Science and Technology, 2(12), 7785-7796
  13. Omwene, P. I., Sarihan, Z. B. O., Karagunduz, A., & Keskinler, B. (2021). Bio-based succinic acid recovery by ion exchange resins integrated with nanofiltration/reverse osmosis preceded crystallization. Food and Bioproducts Processing, 129, 1-9.
  14. Wawrzkiewicz, M., & Hubicki, Z. (2016). Anion exchange resins of tri-n-butyl ammonium functional groups for dye baths and textile wastewater treatment. Solvent Extraction and Ion Exchange, 34(6), 558-575.
  15. Bezerra de Araujo, C. M., Filipe Oliveira do Nascimento, G., Rodrigues Bezerra da Costa, G., Santos da Silva, K., Salgueiro Baptisttella, A. M., Gomes Ghislandi, M., & Alves da Motta Sobrinho, M. (2019). Adsorptive removal of dye from real textile wastewater using graphene oxide produced via modifications of hummers method. Chemical Engineering Communications, 206(11), 1375-1387.
  16. Nunez, Sarahi, Eric Arets, Rob Alkemade, Caspar Verwer, and Rik Leemans. "Assessing the impacts of climate change on biodiversity: is below 2° C enough?." Climatic Change 154, no. 3 (2019): 351-365.
  17. Bhatia, D., Sharma, N. R., Singh, J., & Kanwar, R. S. (2017). Biological methods for textile dye removal from wastewater: A review. Critical Reviews in Environmental Science and Technology, 47(19), 1836-1876.
  18. Ramlow, H., Machado, R. A. F., Bierhalz, A. C. K., & Marangoni, C. (2020). Direct contact membrane distillation applied to wastewaters from different stages of the textile process. Chemical Engineering Communications, 207(8), 1062-1073.
  19. Bouzid, A. M., Guerrero, J. M., Cheriti, A., Bouhamida, M., Sicard, P., & Benghanem, M. (2015). A survey on control of electric power distributed generation systems for microgrid applications. Renewable and Sustainable Energy Reviews, 44, 751-766.
  20. Lee, K. E., Mokhtar, M., Hanafiah, M. M., Halim, A. A., & Badusah, J. (2016). Rainwater harvesting as an alternative water resource in Malaysia: potential, policies and development. Journal of Cleaner Production, 126, 218-222.
  21. Buthiyappan, A., Raja Ehsan Shah, R. S. S., Asghar, A., Abdul Raman, A. A., Daud, M. A. W., Ibrahim, S., & Tezel, F. H. (2019). Textile wastewater treatment efficiency by Fenton oxidation with integration of membrane separation system. Chemical Engineering Communications, 206(4), 541-557.
  22. Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., ... & Zheng, B. (2018). Global carbon budget 2018. Earth System Science Data, 10(4), 2141-2194.
  23. Saini, B., Sinha, M. K., & Dash, S. K. (2019). Mitigation of HA, BSA and oil/water emulsion fouling of PVDF Ultrafiltration Membranes by SiO2-g-PEGMA nanoparticles. Journal of Water Process Engineering, 30, 100603.
  24. Ullah, A., Manghwar, H., Shaban, M., Khan, A. H., Akbar, A., Ali, U., ... & Fahad, S. (2018). Phytohormones enhanced drought tolerance in plants: a coping strategy. Environmental Science and Pollution Research, 25(33), 33103-33118.
  25. Xia, T., Kovochich, M., Liong, M., Madler, L., Gilbert, B., Shi, H., ... & Nel, A. E. (2008). Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS nano, 2(10), 2121-2134.
  26. Winkler, W. C., & Breaker, R. R. (2005). Regulation of bacterial gene expression by riboswitches. Annu. Rev. Microbiol., 59, 487-517.
  27. Sun, Y., Chen, Z., Wu, G., Wu, Q., Zhang, F., Niu, Z., & Hu, H. Y. (2016). Characteristics of water quality of municipal wastewater treatment plants in China: implications for resources utilization and management. Journal of Cleaner Production, 131, 1-9.
  28. JRojas, J., & Zhelev, T. (2012). Energy efficiency optimisation of wastewater treatment: Study of ATAD. Computers & Chemical Engineering, 38, 52-63.
  29. Taelman, S. E., De Meester, S., Roef, L., Michiels, M., & Dewulf, J. (2013). The environmental sustainability of microalgae as feed for aquaculture: a life cycle perspective. Bioresource technology, 150, 513-522.
  30. Rahim, R., & Raman, A. A. A. (2017). Carbon dioxide emission reduction through cleaner production strategies in a recycled plastic resins producing plant. Journal of cleaner production, 141, 1067-1073.
  31. Coppens, J., Grunert, O., Van Den Hende, S., Vanhoutte, I., Boon, N., Haesaert, G., & De Gelder, L. (2016). The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. Journal of applied phycology, 28(4), 2367-2377.
  32. Sfez, S., Van Den Hende, S., Taelman, S. E., De Meester, S., & Dewulf, J. (2015). Environmental sustainability assessment of a microalgae raceway pond treating aquaculture wastewater: From up-scaling to system integration. Bioresource Technology, 190, 321-331.
  33. Xu, J., Li, Y., Wang, H., Wu, J., Wang, X., & Li, F. (2017). Exploring the feasibility of energy self-sufficient wastewater treatment plants: a case study in eastern China. Energy Procedia, 142, 3055-3061.
  34. Di Fraia, S., Massarotti, N., & Vanoli, L. (2018). A novel energy assessment of urban wastewater treatment plants. Energy Conversion and Management, 163, 304-313.
  35. Menzel, R., Barg, S., Miranda, M., Anthony, D. B., Bawaked, S. M., Mokhtar, M., ... & Shaffer, M. S. (2015). Joule heating characteristics of emulsion‐templated graphene aerogels. Advanced Functional Materials, 25(1), 28-35.
  36. de Assis, A. C. C., Coelho, R. M., da Silva Pinheiro, E., & Durigan, G. (2011). Water availability determines physiognomic gradient in an area of low-fertility soils under Cerrado vegetation. Plant Ecology, 212(7), 1135-1147.
  37. Hanson, A. J., Luek, J. L., Tummings, S. S., McLaughlin, M. C., Blotevogel, J., & Mouser, P. J. (2019). High total dissolved solids in shale gas wastewater inhibit biodegradation of alkyl and nonylphenol ethoxylate surfactants. Science of the total environment, 668, 1094-1103.
  38. Hsu, Po-Hsuan, Xuan Tian, and Yan Xu. "Financial development and innovation: Cross-country evidence." Journal of financial economics 112, no. 1 (2014): 116-135.
  39. Wang, Q., Zhao, Z., Zhou, P., & Zhou, D. (2013). Energy efficiency and production technology heterogeneity in China: a meta-frontier DEA approach. Economic Modelling, 35, 283-289.
  40. Jhansi, S. C., & Mishra, S. K. (2013). Wastewater treatment and reuse: sustainability options. Consilience, (10), 1-15.
  41. Cornejo, P. K., Santana, M. V., Hokanson, D. R., Mihelcic, J. R., & Zhang, Q. (2014). Carbon footprint of water reuse and desalination: a review of greenhouse gas emissions and estimation tools. Journal of Water Reuse and Desalination, 4(4), 238-252.
  42. Masłoń, A., Czarnota, J., Szaja, A., Szulżyk-Cieplak, J., & Łagód, G. (2020). The enhancement of energy efficiency in a wastewater treatment plant through sustainable biogas use: Case study from Poland. Energies, 13(22), 6056.
  43. Capodaglio, A. G., & Olsson, G. (2019). Energy issues in sustainable urban wastewater management: Use, demand reduction and recovery in the urban water cycle. Sustainability, 12(1), 266.
  44. Capodaglio, A. G. (2020). Taking the water out of “wastewater”: An ineluctable oxymoron for urban water cycle sustainability. Water Environment Research, 92(12), 2030-2040.
  45. Ranieri, E., Moustakas, K., Barbafieri, M., Ranieri, A. C., Herrera‐Melián, J. A., Petrella, A., & Tommasi, F. (2020). Phytoextraction technologies for mercury‐and chromium‐contaminated soil: a review. Journal of Chemical Technology & Biotechnology, 95(2), 317-327.
  46. Onchoke, K. K., & Fateru, O. O. (2021). Evaluating bioavailability of elements in municipal wastewater sludge (Biosolids) from three rural wastewater treatment plants in East Texas (USA) by a sequential extraction procedure. Results in Chemistry, 3, 100211.
  47. Ji, B., Zhang, M., Wang, L., Wang, S., & Liu, Y. (2020). Removal mechanisms of phosphorus in non-aerated microalgal-bacterial granular sludge process. Bioresource Technology, 312, 123531.
  48. Mihelcic, J. R., Naughton, C. C., Verbyla, M. E., Zhang, Q., Schweitzer, R. W., Oakley, S. M., ... & Whiteford, L. M. (2017). The grandest challenge of all: The role of environmental engineering to achieve sustainability in the world's developing regions. Environmental Engineering Science, 34(1), 16-41.
  49. Nguyen, T. K. L., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Nguyen, T. V., & Nghiem, D. L. (2020). Contribution of the construction phase to environmental impacts of the wastewater treatment plant. Science of the Total Environment, 743, 140658.
  50. Silva, C., & Rosa, M. J. (2015). Energy performance indicators of wastewater treatment: a field study with 17 Portuguese plants. Water Science and Technology, 72(4), 510-519.
  51. Gernaey, K. V., Van Loosdrecht, M. C., Henze, M., Lind, M., & Jørgensen, S. B. (2004). Activated sludge wastewater treatment plant modelling and simulation: state of the art. Environmental modelling & software, 19(9), 763-783.
  52. Bartkowska, I., & Dzienis, L. (2019). Utilization of Sewage Sludge after the Process of Autothermal Digestion. Journal of Ecological Engineering, 20(8).
  53. Bartkowska, I., & Wawrentowicz, D. (2018). Analysis of Selected Technical and Technological Parameters of the Sewage Sludge Stability Process. Journal of Ecological Engineering, 19(4).
  54. Adeyeye, K., Gallagher, J., McNabola, A., Ramos, H. M., & Coughlan, P. (2021). Socio-technical viability framework for micro hydropower in group water-energy schemes. Energies, 14(14), 4222.
  55. Muga, H. E., & Mihelcic, J. R. (2008). Sustainability of wastewater treatment technologies. Journal of environmental management, 88(3), 437-447.
  56. Ajayi, T. O., & Ogunbayo, A. O. (2012). Achieving environmental sustainability in wastewater treatment by phytoremediation with water hyacinth (Eichhornia crassipes). Journal of Sustainable Development, 5(7), 80.
  57. Mamais, D., Noutsopoulos, C., Dimopoulou, A., Stasinakis, A., & Lekkas, T. D. (2015). Wastewater treatment process impact on energy savings and greenhouse gas emissions. Water Science and Technology, 71(2), 303-308.
  58. Yüksel, I. (2010). Hydropower for sustainable water and energy development. Renewable and Sustainable Energy Reviews, 14(1), 462-469.
  59. Shen, Y., & Linville, J. L. (2015). Urgun-‐Demirtas, M., Mintz, MM & Snyder, SW An overview of biogas production and utilization at full-‐scale wastewater treatment plants(WWTPs) in the United States: Challenges and opportunities towards energy-‐neutral WWTPs. Renew. Sustain. Energy Rev, 50, 346-362.
  60. Gude, V. G. (2015). Energy and water autarky of wastewater treatment and power generation systems. Renewable and sustainable energy reviews, 45, 52-68.

Most read articles by the same author(s)