Main Article Content

Abstract

Floating solar photovoltaic (FPV) systems have become a desirable research topic for optimization and development. The primary objective of the current study is to optimize an FPV at Near East University Lake in Northern Cyprus, aiming to enhance energy production and mitigate negative environmental impacts. Besides, the potential for energy generation and economic feasibility of various design configurations related to fixed and tracked PV systems and coverage area (45, 60, 75, and 90%) were investigated. The results demonstrated that the increase in coverage area indeed increased energy yield due to the increase in the number of panels. The 90% coverage area, for instance, reduces the cost of energy production to 0.0176 USD/kWh and produces a very respectable increase in energy yield. According to the techno-economic analysis, the reduction of GHG emissions can range from 330 to 659 tCO2/year, depending on the coverage area. The value of NPV demonstrates the system's long-term sustainability and profitability, while the basic payback period remains relatively consistent across all coverage percentages, ranging from 3.19 to 3.20 years. Thus, this research provides valuable insights into how floating solar technology can be integrated with water conservation and sustainable energy production, which can greatly aid in achieving renewable energy targets and reducing water evaporation losses.

Keywords

Floating PV system Near East University Lake Northern Cyprus Techno-economic Environmental effects

Article Details

How to Cite
Kassem, Y., Çamur, H., & Abdalla, M. H. A. . (2025). Toward sustainable power with floating solar at Near East University Lake, Northern Cyprus. Future Technology, 4(4), 216–227. Retrieved from https://fupubco.com/futech/article/view/470
Bookmark and Share

References

  1. Tan, G., Afrouzi, H. N., Ahmed, J., Hassan, A., &Sukki, F. M. (2024). Analyzing meteorological parameters using Pearson correlation coefficient and implementing machine learning models for solar energy prediction in Kuching, Sarawak. Future Sustainability, 2(2), 20-26.https://doi.org/10.55670/fpll.fusus.2.2.3
  2. Razeghi, M., Saifoddin, A. A., Abdoos, M., Yousefi, H., Salaripoor, H., Gobnaki, M. R., ...&Gholizadeh, M. H. (2025). Evaluating the economic impact of solar energy on local industries in Semnan, Iran. Future Sustainability, 3(1), 49-58. https://doi.org/10.55670/fpll.fusus.3.1.5
  3. Jawad, A., Hasan, M. S., &Faruqui, M. F. I. (2023). Small-scale floating photovoltaic systems in university campus: A pathway to achieving SDG 7 goals in Bangladesh. Energy Conversion and Management, 297, 117722. https://doi.org/10.1016/j.enconman.2023.117722
  4. Renné, D. S. (2022). Progress, opportunities, and challenges of achieving net-zero emissions and 100% renewables. Solar Compass, 1, 100007. https://doi.org/10.1016/j.solcom.2022.100007
  5. Aleksandra, A., Sara, B. P., Małgorzata, J., Brian, B., Davide, P., & Miguel, C. (2024). Role of solar PV in net‐zero growth: An analysis of international manufacturers and policies. Progress in Photovoltaics: Research and Applications, 32(9), 607-622. https://doi.org/10.1002/pip.3797
  6. Paul, D., Devaprakasam, D., Patil, S., &Agrawal, A. (2023). Floating Solar: A Review on the Comparison of Efficiency, Issues, and Projections with Ground-Mounted Solar Photovoltaics. International Journal of Sustainable Development & Planning, 18(10). https://doi.org/110.18280/ijsdp.181021
  7. Kumar, N. M., Chakraborty, S., Yadav, S. K., Singh, J., & Chopra, S. S. (2022). Advancing simulation tools specific to floating solar photovoltaic systems–Comparative analysis of field-measured and simulated energy performance. Sustainable Energy Technologies and Assessments, 52, 102168. https://doi.org/10.1016/j.seta.2022.102168
  8. Lee, N., Grunwald, U., Rosenlieb, E., Mirletz, H., Aznar, A., Spencer, R., & Cox, S. (2020). Hybrid floating solar photovoltaics-hydropower systems: Benefits and global assessment of technical potential. Renewable Energy, 162, 1415-1427.‏ https://doi.org/10.1016/j.renene.2020.08.080
  9. Shi, W., Yan, C., Ren, Z., Yuan, Z., Liu, Y., Zheng, S., ...& Han, X. (2023). Review on the development of marine floating photovoltaic systems. Ocean Engineering, 286, 115560. https://doi.org/10.1016/j.oceaneng.2023.115560
  10. Liu, G., Guo, J., Peng, H., Ping, H., & Ma, Q. (2024). Review of recent offshore floating photovoltaic systems. Journal of Marine Science and Engineering, 12(11), 1942. https://doi.org/10.3390/jmse12111942
  11. Claus, R., &López, M. (2022). Key issues in the design of floating photovoltaic structures for the marine environment. Renewable and Sustainable Energy Reviews, 164, 112502. https://doi.org/10.1016/j.rser.2022.112502
  12. Ghigo, A., Faraggiana, E., Sirigu, M., Mattiazzo, G., &Bracco, G. (2022). Design and analysis of a floating photovoltaic system for offshore installation: The case study of Lampedusa. Energies, 15(23), 8804. https://doi.org/10.3390/en15238804
  13. Manolache, M., Manolache, A. I., & Andrei, G. (2025). Floating Solar Energy Systems: A Review of Economic Feasibility and Cross-Sector Integration with Marine Renewable Energy, Aquaculture and Hydrogen. Journal of Marine Science and Engineering, 13(8), 1404. https://doi.org/10.3390/jmse13081404
  14. Attar, H., Alahmer, A., Borowski, G., &Alsaqoor, S. (2025). Comprehensive review of advancements, challenges, design, and environmental impact in floating photovoltaic systems. Ecological Engineering & Environmental Technology (EEET), 26(2).
  15. Santafé, M. R., Soler, J. B. T., Romero, F. J. S., Gisbert, P. S. F., Gozálvez, J. J. F., &Gisbert, C. M. F. (2014). Theoretical and experimental analysis of a floating photovoltaic cover for water irrigation reservoirs. Energy, 67, 246-255. https://doi.org/10.1016/j.energy.2014.01.083
  16. Siecker, J., Kusakana, K., &Numbi, E. B. (2017). A review of solar photovoltaic systems cooling technologies. Renewable and Sustainable Energy Reviews, 79, 192-203. https://doi.org/10.1016/j.rser.2017.05.053
  17. Silalahi, D. F., &Blakers, A. (2023, September). Global atlas of marine floating solar PV potential. In Solar (Vol. 3, No. 3, pp. 416-433). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/solar3030023
  18. Klugmann-Radziemska, E. (2020). Shading, dusting and incorrect positioning of photovoltaic modules as important factors in performance reduction. Energies, 13(8), 1992. https://doi.org/10.3390/en13081992
  19. Paydar, M. A. (2020). Optimum design of building integrated PV module as a movable shading device. Sustainable Cities and Society, 62, 102368. https://doi.org/10.1016/j.scs.2020.102368
  20. Kim, S. H., Yoon, S. J., & Choi, W. (2017). Design and construction of 1 MW class floating PV generation structural system using FRP members. Energies, 10(8), 1142. https://doi.org/10.3390/en10081142
  21. Kumar, M., Niyaz, H. M., & Gupta, R. (2021). Challenges and opportunities towards the development of floating photovoltaic systems. Solar Energy Materials and Solar Cells, 233, 111408. https://doi.org/10.1016/j.solmat.2021.111408
  22. Silvério, N. M., Barros, R. M., Tiago Filho, G. L., Redón-Santafé, M., dos Santos, I. F. S., & de Mello Valerio, V. E. (2018). Use of floating PV plants for coordinated operation with hydropower plants: Case study of the hydroelectric plants of the São Francisco River basin. Energy Conversion and Management, 171, 339-349. https://doi.org/10.1016/j.enconman.2018.05.095
  23. Kumar, N. M., Subramaniam, U., Mathew, M., Ajitha, A., &Almakhles, D. J. (2020). Exergy analysis of thin-film solar PV module in ground-mount, floating, and submerged installation methods. Case Studies in Thermal Engineering, 21, 100686. https://doi.org/10.1016/j.csite.2020.100686
  24. Gorjian, S., Sharon, H., Ebadi, H., Kant, K., Scavo, F. B., & Tina, G. M. (2021). Recent technical advancements, economics, and environmental impacts of floating photovoltaic solar energy conversion systems. Journal of Cleaner Production, 278, 124285. https://doi.org/10.1016/j.jclepro.2020.124285
  25. Essak, L., &Ghosh, A. (2022). Floating photovoltaics: A review. Clean Technologies, 4(3), 752-769. https://doi.org/10.3390/cleantechnol4030046
  26. Fakouriyan, S., Saboohi, Y., &Fathi, A. (2019). Experimental analysis of a cooling system effect on photovoltaic panels' efficiency and its preheating water production. Renewable Energy, 134, 1362-1368. https://doi.org/10.1016/j.renene.2018.09.054
  27. Farrar, L. W., Bahaj, A. S., James, P., Anwar, A., &Amdar, N. (2022). Floating solar PV to reduce water evaporation in water-stressed regions and powering water pumping: Case study Jordan. Energy Conversion and Management, 260, 115598. https://doi.org/10.1016/j.enconman.2022.115598
  28. Katircioğlu, S. T. (2014). Estimating higher education induced energy consumption: The case of Northern Cyprus. Energy, 66, 831-838. https://doi.org/10.1016/j.energy.2013.12.040
  29. Giritli, N., &Kalmaz, D. B. (2022). Re‐examining the impact of financial development on the economic growth of North Cyprus through the moderating role of the education sector. Journal of Public Affairs, 22(3), e2517. https://doi.org/10.1002/pa.2517
  30. Akçaba, S., &Eminer, F. (2022). Sustainable energy planning for the aspiration to transition from fossil energy to renewable energy in Northern Cyprus. Heliyon, 8(6). https://doi.org/10.1016/j.heliyon.2022.e09813
  31. Prăvălie, R., Patriche, C., &Bandoc, G. (2019). Spatial assessment of solar energy potential at global scale. A geographical approach. Journal of Cleaner Production, 209, 692-721. https://doi.org/10.1016/j.jclepro.2018.10.239
  32. Dhamran, M. A. A. (2023). Techno-Economic Analysis of Integrating Renewable Electricity and Electricity Storage in a Typical Family House in the Turkish Republic of Northern Cyprus (Master's thesis, Eastern Mediterranean University (EMU)-DoğuAkdenizÜniversitesi (DAÜ)).
  33. Damdelen, O., &Şeker, U. (2020). Investigation and implementing on photovoltaic systems in North Cyprus. AvrupaBilimveTeknolojiDergisi, 380-395. https://doi.org/10.31590/ejosat.802784
  34. Yosef, E., &Damdelen, Ö. (2022). The reduction of energy consumption in sustainable buildings for North Cyprus. Journal of Construction Engineering, Management & Innovation, 5(4), 286-301.
  35. Dakyen, M. M., Dagbasi, M., &Özdenefe, M. (2022). Energy models for cost-optimal analysis: Development and calibration of residential reference building models for Northern Cyprus. Indoor and Built Environment, 31(3), 657-681. https://doi.org/10.1177/1420326X211013076
  36. Abbasoglu, S. (2011). Techno-economic and environmental analysis of PV power plants in Northern Cyprus. Energy EducSciTechnol Part A, 28, 357-368.
  37. Yenen, M.; Ercan, F.; Fahrioglu, M. Solar thermal system analysis of Northern Cyprus. In proceedings of the EECS'12—7th International Symposium on Electrical and Computer Systems, Lefke, Northern Cyprus, November 2012.
  38. Okoye, C. O., &Atikol, U. (2014). A parametric study on the feasibility of solar chimney power plants in North Cyprus conditions. Energy conversion and management, 80, 178-187. https://doi.org/10.1016/j.enconman.2014.01.009
  39. Maltini, F.; Minder, R. The Serhatköy photovoltaic power plant and the future of renewable energy on the Turkish Republic of Northern Cyprus. Eco-Friendly Innov. inElectr. Transmiss. andDistrib. Netws. 2015, 377–402. https://doi.org/10.1016/B978-1-78242-010-1.00018-5
  40. Ozerdem, O. C.; Tackie, S.; Biricik, S. Performance evaluation of Serhatkoy (1.2 MW) PV ‎power plant. 9th International Conference on Electrical and Electronics Engineering ‎‎(ELECO 2015), Bursa, Turkey, 26-28 November 2015. https://doi.org/10.1109/ELECO.2015.7394510
  41. Kamali, S. (2016). Feasibility analysis of standalone photovoltaic electrification system in a residential building in Cyprus. Renewable and Sustainable Energy Reviews, 65, 1279-1284. https://doi.org/10.1016/j.rser.2016.07.018
  42. Dagbasi, M., Bamisile, O., &Adii, C. (2016, October). The techno-economic comparison of solar power generation methods for Turkish Republic of North Cyprus. In 2016 HONET-ICT (pp. 17-23). IEEE. https://doi.org/10.1109/HONET.2016.7753430
  43. Cabacaba, N., &Abbasoğlu, S. (2017). Evaluation of Wind–Solar Hybrid System for a Household in Northern Cyprus. In Towards 100% Renewable Energy (pp. 313-321). Springer, Cham. https://doi.org/10.1007/978-3-319-45659-1_34
  44. Ouria, M.; Sevinc, H. Evaluation of the potential of solar energy utilization in Famagusta, Cyprus. Sust. Cities and Society. 2018, 37, 189–202. https://doi.org/10.1016/j.scs.2017.10.036
  45. Al-Ghussain, L., Abujubbeh, M., &Fahrioglu, M. (2018). Assessment of PV investments in Northern Cyprus. In 16th Int. Conf. Clean Energy (pp. 9-11).
  46. Hastunç, M., &Tekbıyık-Ersoy, N. (2018). Optimizing Residential Renewable Energy Utilization in North Cyprus: Case Study of Solar Energy. no. May, 9.
  47. Ogbeba, J.; Hoskara, E. The Evaluation of Single-Family Detached Housing Units in terms of Integrated Photovoltaic Shading Devices: The Case of Northern Cyprus. Sust. 2019, 11(3), 593. https://doi.org/10.3390/su11030593
  48. Oner, H. (2019). Economic feasibility assessment of solar powered seawater desalination plants: Unconventional fresh water supply for Guzelyurt, Northern Cyprus (Master's thesis, Middle East Technical University).
  49. Al‐Ghussain, L., &Taylan, O. (2019). Sizing methodology of a PV/wind hybrid system: Case study in cyprus. Environmental Progress & Sustainable Energy, 38(3), e13052. https://doi.org/10.1002/ep.13052
  50. Kassem, Y., Çamur, H., &Alhuoti, S. M. A. (2020). Solar energy technology for Northern Cyprus: Assessment, statistical analysis, and feasibility study. Energies, 13(4), 940. https://doi.org/10.3390/en13040940
  51. Al-Turjman, F., Qadir, Z., Abujubbeh, M., &Batunlu, C. (2020). Feasibility analysis of solar photovoltaic-wind hybrid energy system for household applications. Computers & Electrical Engineering, 86, 106743. https://doi.org/10.1016/j.compeleceng.2020.106743
  52. Kassem, Y., Gökçekuş, H., &Güvensoy, A. (2021). Techno-economic feasibility of grid-connected solar PV system at Near East University hospital, Northern Cyprus. Energies, 14(22), 7627. https://doi.org/10.3390/en14227627
  53. Ünlükuş, U. A. (2023). Economic feasiblity of floating solar PV and land-based solar PV in Northern Cyprus (Master's thesis, Middle East Technical University).
  54. Kassem, Y., Gökçekuş, H., & Gökçekuş, R. (2024). Towards Sustainable Energy Solutions: Evaluating the Impact of Floating PV Systems in Reducing Water Evaporation and Enhancing Energy Production in Northern Cyprus. Energies, 17(21), 5300. https://doi.org/10.3390/en17215300
  55. Paudel, B., Regmi, N., Phuyal, P., Neupane, D., Hussain, M. I., Kim, D. H., &Kafle, S. (2021). Techno-economic and environmental assessment of utilizing campus building rooftops for solar PV power generation. International Journal of Green Energy, 18(14), 1469-1481. Paudel, B., Regmi, N., Phuyal, P., Neupane, D., Hussain, M. I., Kim, D. H., &Kafle, S. (2021). Techno-economic and environmental assessment of utilizing campus building rooftops for solar PV power generation. International Journal of Green Energy, 18(14), 1469-1481.
  56. Mahmoud, M., Sayed, E. T., Abdelkareem, M. A., Rabaia, M. K. H., &Olabi, A. G. (2023). Modeling and simulation of solar photovoltaic energy systems. In Renewable Energy-Volume 1: Solar, Wind, and Hydropower (pp. 281-295). Academic Press. https://doi.org/10.1016/B978-0-323-99568-9.00017-0
  57. Zhu, Y., Liu, J., & Yang, X. (2020). Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection. Applied Energy, 264, 114647. https://doi.org/10.1016/j.apenergy.2020.114647
  58. Huang, B., Huang, J., Xing, K., Liao, L., Xie, P., Xiao, M., & Zhao, W. (2023). Development of a solar-tracking system for horizontal single-axis PV arrays using spatial projection analysis. Energies, 16(10), 4008. https://doi.org/10.3390/en16104008
  59. Gurfude, S. S., &Kulkarni, P. S. (2019, December). Energy yield of tracking type floating solar PV plant. In 2019 National Power Electronics Conference (NPEC) (pp. 1-6). IEEE. https://doi.org/10.1109/NPEC47332.2019.9034846
  60. Choi, Y. K. (2014). A study on power generation analysis of floating PV system considering environmental impact. International journal of software engineering and its applications, 8(1), 75-84. http://dx.doi.org/10.14257/ijseia.2014.8.1.07
  61. Niccolai, A., Grimaccia, F., Di Lorenzo, G., Araneo, R., Ughi, F., &Polenghi, M. (2023). A review of floating PV systems with a techno-economic analysis. IEEE Journal of Photovoltaics, 14(1), 23-34. https://doi.org/10.1109/JPHOTOV.2023.3319601
  62. Tina, G. M., &Scavo, F. B. (2022). Energy performance analysis of tracking floating photovoltaic systems. Heliyon, 8(8).
  63. Vodapally, S. N., & Ali, M. H. (2022). A comprehensive review of solar photovoltaic (PV) technologies, architecture, and its applications to improved efficiency. Energies, 16(1), 319. https://doi.org/10.3390/en16010319
  64. Liu, Z., Zhang, Y., Yuan, X., Liu, Y., Xu, J., Zhang, S., & He, B. J. (2021). A comprehensive study of feasibility and applicability of building integrated photovoltaic (BIPV) systems in regions with high solar irradiance. Journal of Cleaner Production, 307, 127240. https://doi.org/10.1016/j.jclepro.2021.127240
  65. Abd-Elhamid, H. F., Ahmed, A., Zeleňáková, M., Vranayová, Z., &Fathy, I. (2021). Reservoir management by reducing evaporation using floating photovoltaic system: A case study of Lake Nasser, Egypt. Water, 13(6), 769. https://doi.org/10.3390/w13060769
  66. Ilgen, K., Schindler, D., Armbruster, A., Ladwig, R., Eppinger Ruiz de Zarate, I., & Lange, J. (2024). Evaporation reduction and energy generation potential using floating photovoltaic power plants on the Aswan High Dam Reservoir. Hydrological Sciences Journal, 1–12. https://doi.org/10.1080/02626667.2024.2332625
  67. Kim, S. M., Oh, M., & Park, H. D. (2019). Analysis and prioritization of the floating photovoltaic system potential for reservoirs in Korea. Applied Sciences, 9(3), 395. https://doi.org/10.3390/app9030395
  68. de Oliveira Azevêdo, R., Rotela Junior, P., Rocha, L. C. S., Chicco, G., Aquila, G., &Peruchi, R. S. (2020). Identification and analysis of impact factors on the economic feasibility of photovoltaic energy investments. Sustainability, 12(17), 7173. https://doi.org/10.3390/su12177173
  69. Mohammadi, K., Naderi, M., &Saghafifar, M. (2018). Economic feasibility of developing grid-connected photovoltaic plants in the southern coast of Iran. Energy, 156, 17-31. https://doi.org/10.1016/j.energy.2018.05.065
  70. Elminshawy, N. A., Osama, A., Gagliano, A., Oterkus, E., & Tina, G. M. (2024). A technical and economic evaluation of floating photovoltaic systems in the context of the water-energy nexus. Energy, 303, 131904. https://doi.org/10.1016/j.energy.2024.131904

Most read articles by the same author(s)