Main Article Content

Abstract

Iraqi buildings continue to rely heavily on fossil fuels, which raises carbon emissions and energy costs. To address this knowledge gap, the primary objective of the present study is to assess the techno-economic and environmental performance of solar energy retrofitting for a two-story mixed-use building in the eastern Iraqi province of Diyala, utilizing ERA5 reanalysis data for the first time. To this aim, three retrofit scenarios are considered ((1) the baseline scenario (BS) with no renewable systems, (2) the second scenario (SS) with a rooftop photovoltaic (PV) system, and (3) the third scenario (TS) combining rooftop PV, building-integrated photovoltaic (BIPV) glazing and a 30 mm layer of Expanded Polystyrene (EPS) insulation). The simulations were conducted with and without battery storage (103.2 kWh capacity) to demonstrate grid independence and energy self-sufficiency. The findings demonstrate that the TS scenario achieved net-zero or carbon-positive operation, as evidenced by the reduction of annual CO₂ emissions from 39,122 kg (BS) to –9,257 kg (TS), which represents net export of renewable energy to the grid. Economically, SPP ranged from 3.2 to 5.4 years without a battery and from 10 to 14 years with one, and LCOE ranged from 0.038 to 0.072 USD/kWh, demonstrating long-term viability. Furthermore, 90–120 electric vehicles might be charged each month using the extra daylight energy, encouraging sustainable mobility. This study shows that it is possible to create zero-emission buildings that use integrated PV and BIPV systems to allow EV charging, improve grid stability, and lower CO₂ emissions all at once. Besides, the innovative potential of integrated PV-BIPV-battery systems for zero-emission buildings to decarbonize Iraq's urban energy infrastructure is demonstrated in this study.

Keywords

Iraq Techno-economic Rooftop PV system BIPV CO₂ emissions Electric vehicles

Article Details

How to Cite
Kassem, Y. ., Çamur , H. ., Aldayyeni, A. S. ., & Abdelnaby, A. H. A. . (2025). AI-enabled toward zero-emission buildings and clean mobility: PV–BIPV and battery storage integration: a case study of Diyala, Iraq. Future Technology, 5(1), 180–194. Retrieved from https://fupubco.com/futech/article/view/602
Bookmark and Share

References

  1. Razeghi, M., Saifoddin, A. A., Abdoos, M., Yousefi, H., Salaripoor, H., Gobnaki, M. R., ... & Gholizadeh, M. H. (2025). Evaluating the economic impact of solar energy on local industries in Semnan, Iran. Future Sustainability, 3(1), 49-58. https://doi.org/10.55670/fpll.fusus.3.1.5
  2. Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P. W., Trisos, C., Romero, J., Aldunce, P., Barrett, K., Blanco, G., Cheung, W. W., Connors, S., Denton, F., Diongue-Niang, A., Dodman, D., Garschagen, M., Geden, O., Hayward, B., Jones, C., . . . Ha, M. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II, and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. https://doi.org/10.59327/ipcc/ar6-9789291691647
  3. United Nations Climate Change, 2024. The Paris Agreement. United Nations Climate Change. In: https://unfccc.int/process-and-meetings/the-paris-agreement
  4. Kyei, S. K., Boateng, H. K., & Frimpong, A. J. (2025). Renewable energy innovations: fulfilling SDG targets. Clean Energy, 9(2), 190-203. https://doi.org/10.1093/ce/zkae109
  5. Sene, D., Sarr, A., Sako, M. K., Ouattara, A., Ndiaye, M. F., & Sambou, V. (2024). Improved photovoltaic energy production under partial shading using an innovative MPPT controller based on the Flying Squirrel Search Optimization algorithm. Future Energy, 3(3), 33-48. https://doi.org/10.55670/fpll.fuen.3.3.4
  6. Mutumbi, U., Thondhlana, G., &Ruwanza, S. (2024). Adoption of residential rooftop solar PV systems in South Africa: A scoping review of barriers. Heliyon, 10(10). https://doi.org/10.1016/j.heliyon.2024.e30937
  7. Ebhota, W. S., & Tabakov, P. Y. (2025). Integrating rooftop PV system in low-cost building plan: A pathway to improving energy access and environmental sustainability. Energy and Buildings, 116020. https://doi.org/10.1016/j.enbuild.2025.116020
  8. Poornima, P. U., Dhineshkumar, K., Kumar, C. K., Sumana, S., Sundari, M. R., Sivaraman, P., ... & Rajaram, A. (2025). Optimising rooftop photovoltaic adoption in urban landscapes: A system dynamics approach for sustainable energy transitions. Biomedical Signal Processing and Control, 100, 107071. https://doi.org/10.1016/j.bspc.2024.107071
  9. Constantinou, S., Al‐naemi, F., Alrashidi, H., Mallick, T., & Issa, W. (2024). A review on technological and urban sustainability perspectives of advanced building‐integrated photovoltaics. Energy Science & Engineering, 12(3), 1265-1293. https://doi.org/10.1002/ese3.1639
  10. Wang, W., Yang, H., & Xiang, C. (2023). Green roofs and facades with integrated photovoltaic systems for zero energy eco-friendly building–A review. Sustainable Energy Technologies and Assessments, 60, 103426. https://doi.org/10.1016/j.seta.2023.103426
  11. Batista, F., Guimarães, A. S., & Palmero-Marrero, A. I. (2025). Building Integrated Photovoltaics: a multi-level design review for optimized implementation. Renewable and Sustainable Energy Reviews, 220, 115837. https://doi.org/10.1016/j.rser.2025.115837
  12. Smith, A. R., Ghamari, M., Velusamy, S., & Sundaram, S. (2024). Thin-Film technologies for sustainable Building-Integrated photovoltaics. Energies, 17(24), 6363. ttps://doi.org/10.3390/en17246363
  13. Shi, S., & Zhu, N. (2023). Challenges and optimization of building-integrated photovoltaics (BIPV) windows: a review. Sustainability, 15(22), 15876. https://doi.org/10.3390/su152215876
  14. Pelle, M., Lucchi, E., Maturi, L., Astigarraga, A., & Causone, F. (2020). Coloured BIPV technologies: Methodological and experimental assessment for architecturally sensitive areas. Energies, 13(17), 4506. https://doi.org/10.3390/en13174506
  15. Serrano-Lujan, L., Toledo, C., Colmenar, J. M., Abad, J., & Urbina, A. (2022). Accurate thermal prediction model for building-integrated photovoltaics systems using guided artificial intelligence algorithms. Applied Energy, 315, 119015. https://doi.org/10.1016/j.apenergy.2022.119015
  16. Cheng, Y., Gao, M., Dong, J., Jia, J., Zhao, X., & Li, G. (2018). Investigation on the daylight and overall energy performance of semi-transparent photovoltaic facades in cold climatic regions of China. Applied Energy, 232, 517-526. https://doi.org/10.1016/j.apenergy.2018.10.006
  17. Chen, L., Baghoolizadeh, M., Basem, A., Ali, S. H., Ruhani, B., Sultan, A. J., ... & Alizadeh, A. A. (2024). A comprehensive review of a building-integrated photovoltaic system (BIPV). International Communications in Heat and Mass Transfer, 159, 108056. https://doi.org/10.1016/j.icheatmasstransfer.2024.108056
  18. Jelle, B. P., Breivik, C., & Røkenes, H. D. (2012). Building integrated photovoltaic products: A state-of-the-art review and future research opportunities. Solar Energy Materials and Solar Cells, 100, 69-96. https://doi.org/10.1016/j.solmat.2011.12.016
  19. Peng, C., Huang, Y., & Wu, Z. (2011). Building-integrated photovoltaics (BIPV) in architectural design in China. Energy and buildings, 43(12), 3592-3598.
  20. Al-Hamadani, S. (2020). Solar energy as a potential contributor to help bridge the gap between electricity supply and growing demand in Iraq: A review. Int J Adv Appl Sci ISSN, 2252(8814), 8814.
  21. Al-Wakeel, A. (2021). Local energy systems in Iraq: neighbourhood diesel generators and solar photovoltaic generation. In Microgrids and Local Energy Systems. IntechOpen. https://doi.org/10.5772/intechopen.95280
  22. Aziz, A. S., Tajuddin, M. F. N., Zidane, T. E. K., Su, C. L., Mas’ ud, A. A., Alwazzan, M. J., & Alrubaie, A. J. K. (2022). Design and optimization of a grid-connected solar energy system: study in Iraq. Sustainability, 14(13), 8121. https://doi.org/10.3390/su14138121
  23. Alshamri, H., Cockerill, T., Tomlin, A. S., Al-Damook, M., & Al Qubeissi, M. (2024). On–off-Grid Optimal Hybrid Renewable Energy Systems for House Units in Iraq. Clean Technologies, 6(2), 602-624. https://doi.org/10.3390/cleantechnol6020032
  24. Al-Kayiem, H. H., & Mohammad, S. T. (2019). Potential of renewable energy resources with an emphasis on solar power in Iraq: An outlook. Resources, 8(1), 42. https://doi.org/10.3390/resources8010042
  25. Aziz, A. S., Tajuddin, M. F. N., Adzman, M. R., Mohammed, M. F., & Ramli, M. A. (2020). Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: A case study of Iraq. Energy, 191, 116591. https://doi.org/10.1016/j.energy.2019.116591
  26. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., ... & Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly journal of the royal meteorological society, 146(730), 1999-2049.
  27. Gualtieri, G. (2021). Reliability of ERA5 reanalysis data for wind resource assessment: A comparison against tall towers. Energies, 14(14), 4169. https://doi.org/10.3390/en14144169
  28. Masoud, A. A. (2024). Hybrid wind-solar energy potential modeling using ERA5 and solar irradiation data in google Earth Engine. Renewable energy, 232, 121042. https://doi.org/10.1016/j.renene.2024.121042
  29. Olauson, J. (2018). ERA5: The new champion of wind power modelling?. Renewable energy, 126, 322-331. https://doi.org/10.1016/j.renene.2018.03.056
  30. Ramon, J., Lledó, L., Torralba, V., Soret, A., & Doblas‐Reyes, F. J. (2019). What global reanalysis best represents near‐surface winds?. Quarterly Journal of the Royal Meteorological Society, 145(724), 3236-3251. https://doi.org/10.1002/qj.3616
  31. Brune, S., Keller, J. D., & Wahl, S. (2021). Evaluation of wind speed estimates in reanalyses for wind energy applications. Advances in Science and Research, 18, 115-126. https://doi.org/10.5194/asr-18-115-2021
  32. Pronk, V., Bodini, N., Optis, M., Lundquist, J. K., Moriarty, P., Draxl, C., ... & Young, E. (2022). Can reanalysis products outperform mesoscale numerical weather prediction models in modeling the wind resource in simple terrain?. Wind Energy Science, 7(2), 487-504. https://doi.org/10.5194/wes-7-487-2022
  33. Ozbahceci, B. O. (2020). Extreme value statistics of wind speed and wave height of the Marmara Sea based on combined radar altimeter data. Advances in Space Research, 66(10), 2302-2318. https://doi.org/10.1016/j.asr.2019.08.025
  34. Zed, A. A. A., Kansoh, R. M., Iskander, M. M., & Elkholy, M. (2022). Wind and wave climate southeastern of the Mediterranean Sea based on a high-resolution SWAN model. Dynamics of Atmospheres and Oceans, 99, 101311. https://doi.org/10.1016/j.dynatmoce.2022.101311
  35. Belmonte Rivas, M., & Stoffelen, A. (2019). Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT. Ocean Science, 15(3), 831-852. https://doi.org/10.5194/os-15-831-2019
  36. Prasad, K. M., Nagababu, G., & Jani, H. K. (2023). Enhancing offshore wind resource assessment with LIDAR-validated reanalysis datasets: A case study in Gujarat, India. International Journal of Thermofluids, 18, 100320. https://doi.org/10.1016/j.ijft.2023.100320
  37. Kassem, Y., Gökçekuş, H., & Gökçekuş, R. (2024). Towards Sustainable Energy Solutions: Evaluating the Impact of Floating PV Systems in Reducing Water Evaporation and Enhancing Energy Production in Northern Cyprus. Energies, 17(21), 5300. https://doi.org/10.3390/en17215300
  38. Kassem, Y., Çamur, H., & Hussein, A. (2025). Harnessing wind and solar power for electric vehicle charging: a feasibility study at Ikas supermarket, Lefkosa, Northern Cyprus. Future Technology, 4(3), 204-215. https://doi.org/10.55670/fpll.futech.4.3.19
  39. Abdallah, R., Juaidi, A., Salameh, T., Jeguirim, M., Çamur, H., Kassem, Y., & Abdala, S. (2022). Estimation of solar irradiation and optimum tilt angles for south-facing surfaces in the United Arab Emirates: A case study using PVGIS and PVWatts. In Recent advances in renewable energy technologies (pp. 3-39). Academic Press.
  40. Shukla, K. N., Rangnekar, S., & Sudhakar, K. (2016). Mathematical modelling of solar radiation incident on tilted surface for photovoltaic application at Bhopal, MP, India. International Journal of Ambient Energy, 37(6), 579-588. https://doi.org/10.1080/01430750.2015.1023834
  41. Demain, C., Journée, M., & Bertrand, C. (2013). Evaluation of different models to estimate the global solar radiation on inclined surfaces. Renewable energy, 50, 710-721. https://doi.org/10.1016/j.renene.2012.07.031
  42. Tian, Z., Perers, B., Furbo, S., Fan, J., Deng, J., & Dragsted, J. (2018). A comprehensive approach for modelling horizontal diffuse radiation, direct normal irradiance and total tilted solar radiation based on global radiation under Danish climate conditions. Energies, 11(5), 1315. https://doi.org/10.3390/en11051315
  43. EME 810: Solar Resource Assessment and Economics. Retrieved from https://courses.ems.psu.edu/eme810/node/685?utm_source=chatgpt.com
  44. Adeyeye, K. A., Ijumba, N., & Colton, J. S. (2021). A techno-economic model for wind energy costs analysis for low wind speed areas. Processes, 9(8), 1463. https://doi.org/10.3390/pr9081463
  45. Manoj Kumar, N., Sudhakar, K., & Samykano, M. (2019). Techno-economic analysis of 1 MWp grid connected solar PV plant in Malaysia. International Journal of Ambient Energy, 40(4), 434-443. https://doi.org/10.1080/01430750.2017.1410226
  46. Zhou, L., Qi, F., & Yan, X. (2024). A review of research on the passive effect of building photovoltaic systems and analysis of influencing factors. Solar Energy, 278, 112766. https://doi.org/10.1016/j.solener.2024.112766
  47. Mohammad, A. K., Garrod, A., & Ghosh, A. (2023). Do Building Integrated Photovoltaic (BIPV) windows propose a promising solution for the transition toward zero energy buildings? A review. Journal of Building Engineering, 79, 107950. https://doi.org/10.1016/j.jobe.2023.107950
  48. Azami, A., & Sevinç, H. (2021). The energy performance of building integrated photovoltaics (BIPV) by determination of optimal building envelope. Building and environment, 199, 107856. https://doi.org/10.1016/j.buildenv.2021.107856
  49. Amani, N. (2025). Energy efficiency of residential buildings using thermal insulation of external walls and roof based on simulation analysis. Energy Storage and Saving, 4(1), 48-55. https://doi.org/10.1016/j.enss.2024.11.006
  50. Lazaro, S. A. M., Li, X., & Baba, V. F. (2025). Building Envelope Renovation for Energy Efficiency in Maputo, Mozambique: Expanded Polystyrene Insulation and Double-Glazed Windows. Environmental and Earth Sciences Proceedings, 34(1), 9. https://doi.org/10.3390/eesp2025034009
  51. Ahmed, M. M., Bawayan, H. M., Enany, M. A., Elymany, M. M., & Shaier, A. A. (2025). Modern advancements of energy storage systems integrated with hybrid renewable energy sources for water pumping application. Engineering Science and Technology, an International Journal, 62, 101967. https://doi.org/10.1016/j.jestch.2025.101967
  52. Aslam, M. U., Miah, M. S., Amin, B. R., Shah, R., & Amjady, N. (2025). Application of energy storage systems to enhance power system resilience: A critical review. Energies, 18(14), 3883.https://doi.org/10.3390/en18143883

Most read articles by the same author(s)